Absolute Configuration of a Diterpene with an Acyclic 1,2-Diol Moiety and Cytotoxicity of Its Analogues from the Aerial Parts of Aralia cordata

IkSoo Lee, HongJin Kim, UiJung Youn, Byung Sun Min, ${ }^{\dagger}$ Hyun Ju Jung, ${ }^{\ddagger}$ Jae Kuk Yoo, ${ }^{\S}$ Rack Seon Seong, ${ }^{\#}$ and KiHwan Bae*
College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea. "E-mail: baekh@cnu.ac.kr
${ }^{\dagger}$ College of Pharmacy, Catholic University of Daegu, Kyungbook 712-702, Korea
${ }^{\ddagger}$ Department of Oriental Pharmacy, Wonkwang University of Iksan, Jeonbuk 570-749, Korea
${ }^{\S}$ Han Kook Shin Yak, Joongsan-ri, Yangchon-myeon, Nonsan, Chungnam 320-854, Korea
"Korea Food and Drug Administration, Seoul 122-704, Korea
Received July 4, 2008

Key Words : Aralia cordata, Diterpene, Dimolybdenum tetraacetate, Circular dichroism

Aralia cordata Thunb. (Araliaceae) is a perennial herb which is distributed in Korea, China and Japan. Traditionally, the root of A. cordata has been widely used to treat rheumatism, lumbago and lameness in Japan. ${ }^{1}$ Previous phytochemical investigations on this plant have reported the isolation of several kinds of diterpenes having pimarane and kaurane skeletons. ${ }^{2}$ In our current phytochemical investigation on the aerial parts of this plant has led to the isolation of a new ent-pimarane diterpene, ent-15S,16-dihyroxypimar-8(14)-en-19-oic acid (1), together with three known diterpenes, ent-pimar-8(14), 15-dien-19-oic acid (2) ${ }^{3}$, ent-16 α -hydroxykauran-19-oic acid (3) ${ }^{4}$ and ent-kaur-16-en-19-oic acid $(\mathbf{4})^{5}$ (Figure 1). Although the structure of compound $\mathbf{1}$ was reported previously, ${ }^{6}$ there has been no report of the isolation from natural sources. Moreover, there has been no report on the determination of the absolute configuration of the 1,2 -dihydroxyethyl moiety in $\mathbf{1}$. Therefore, in order to deduce the absolute configuration of this moiety, a CD method employing dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ developed by Snatzke and Frelek ${ }^{7}$ was applied to 1. The present paper reports the isolation and structure elucidation of isolated compounds (1-4) from the aerial parts of A.

Figure 1. Structures of compounds 1-4 isolated from the aerial parts of A. cordata and key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ in 1 .
cordata and their cytotoxicity, as well as the determination of the absolute configuration of an acyclic 1,2-diol moiety in 1 using Snatzke's method.

Compound 1 was obtained as a white amorphous powder with a negative optical rotation, $[\alpha]_{\mathrm{D}}^{25}-39.5^{\circ}(c 0.4, \mathrm{MeOH})$. The molecular formula of $\mathbf{1}$ was found to be $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$, on

Table 1. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}),{ }^{13} \mathrm{C}(75 \mathrm{MHz})$ and HMBC data for compound $\mathbf{1}^{a}$ (in $\mathrm{CD}_{3} \mathrm{OD}$)

Carbon	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}(\mathrm{J}$ in Hz $)$	HMBC $(\mathrm{H} \rightarrow \mathrm{C})$
1	40.6	$1.02 \mathrm{ddd}(3.0,3.6,13.5)$	$2,3,5,10,20$
		1.62 m	$1,3,4,10$
2	21.0	1.56 m	$1,2,4,5,19$
3	39.5	1.80 m	
		1.82 m	
4	45.1		
5	57.6	$1.10 \mathrm{md}(2.4,13.2)$	$4,6,7,9,10,18,19,20$
6	26.2	1.32 m	
		1.56 m	$5,6,8,9,14$
7	38.3	2.15 m	
		$2.29 \mathrm{ddd}(1.8,4.2,13.5)$	
8	138.3		
9	50.9	1.61 m	$8,10,11,12,14,20$
10	40.8		
11	20.0	1.45 m	$9,11,13,14,17$
12	32.1	1.48 m	0.84 m
		1.89 m	
13	38.5		
14	130.0	5.36 s	$12,12,13,15,17$
15	80.5	$3.50 \mathrm{dd}(2.1,8.7)$	$12,13,14,16,17$
16	64.6	$3.42 \mathrm{dd}(8.7,10.5)$	13,15
17	23.9	$3.68 \mathrm{dd}(2.1,10.5)$	$12,13,15$
18	29.7	1.20 s	$3,4,5,19$
19	181.6		$1,5,9,10$
20	15.0	0.76 s	

[^0]the basis of a quasimolecular ion peak at $\mathrm{m} / \mathrm{z} 337.2380$ $[\mathrm{M}+\mathrm{H}]^{+}$in the HRFABMS. Its IR spectrum exhibited absorption bands for hydroxyl group ($3450 \mathrm{~cm}^{-1}$), carbonyl group ($1695 \mathrm{~cm}^{-1}$) and trisubstituted double bond (1640 and $842 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ displayed signals for an olefinic proton at $\delta 5.36$ (s), carbinolic protons at $\delta 3.68$ (dd, $J=2.1,10.5 \mathrm{~Hz}), 3.50(\mathrm{dd}, J=2.1,8.7 \mathrm{~Hz})$ and 3.42 (dd, $J=8.7,10.5 \mathrm{~Hz}$) and three tertiary methyl protons at δ $1.20,0.90$ and 0.76 (Table 1). The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra revealed 20 carbon signals consisting of three methyls, eight methylenes, four methines and five quaternary carbons including a carboxyl carbon at $\delta 181.6$ (Table 1). On the basis of the above observations, the presence of a pimarane diterpene skeleton could be inferred. ${ }^{8-11}$ In addition, the olefinic carbon signals at $\delta 138.3$ and 130.0 were indicative for a C-8/C-14 double bond in the ent-pimarane-type structure. ${ }^{11,12}$ Furthermore, a major fragment ion peak at $m / z 275$ $\left[\mathrm{M}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}\right]^{+}$in the EIMS spectrum indicated that $\mathbf{1}$ is an ent-pima-8(14)-ene derivative having a 1,2-dihydroxyethyl side-chain. The presence of a partial structure of 1,2-dihydroxyethyl moiety in $\mathbf{1}$ was further supported by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment through the cross-peaks for the geminal coupling of the hydroxymethylene protons at $\delta 3.40$ and $3.68\left(\mathrm{H}_{2}-16\right)$, and for both of them with the proton at δ $3.50(\mathrm{H}-15)$. The linkage position of a 1,2-dihydroxyethyl moiety was determined to be $\mathrm{C}-13$ on the basis of the HMBC cross-peaks of H-15 ($\delta 3.49$) with C-17 ($\delta 23.9$), C$12(\delta 32.1), \mathrm{C}-13(\delta 38.5), \mathrm{C}-16(\delta 64.6)$ and $\mathrm{C}-14(\delta 130.0)$ (Figure 1).
The relative stereochemistry of the chiral groups on the rings in $\mathbf{1}$ can be determined through NMR spectra, owing to the structural rigidity. On the contrary, the sidearm, 1,2dihydroxyethyl moiety, in $\mathbf{1}$ is flexible and attached to the rest of the molecule through a quaternary carbon, which prevents the use of NMR techniques. Furthermore, the UVvis spectral region of acyclic 1,2-diols below about 190 nm prevents the use of chiroptical methods ${ }^{13}$ for the direct analysis of their absolute configuration, unless a chemical derivatization is carried out on the chiral substrate by addition of a suitable chromophoric group. A possible way to solve this problem is application of a CD (circular dichroism) method employing dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ as an auxiliary chromophore, which is one of the most useful method for rapid and effective determination of the absolute configuration of acyclic 1,2-diols. ${ }^{7}$ In this method, the chiral substrate acts as a ligand of the metal center through ligation to the Mo^{2+} core. ${ }^{7}$ As a consequence to the ligation, the conformational freedom of the flexible molecule is either very much reduced or totally restricted, which makes possible the absolute configurational assignment of the acyclic 1,2-diol moiety on the basis of the chiroptical data, independently of the rest of the molecule.
In order to deduce the absolute configuration of an acyclic 1,2-diol moiety in 1, a CD method employing dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ developed by Snatzke and Frelek ${ }^{7}$ was applied to $\mathbf{1}$, and obtained its CD spectrum in the region of 550-250 nm. According to the rule proposed by

Figure 2. CD spectrum of compound $\mathbf{1}$ in DMSO solution of $\mathrm{Mo}_{2}(\mathrm{AcO})_{4}$. The x -axis represents the wavelength and y -axis represents molar circular dichroism $\left(\Delta \varepsilon^{\prime}, \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)$. A series of four bands above 250 nm (the absorption region of Dimolybdenum tetraacetate) is apparent and Roman numerals (II, III, IV, V) refer to Snatzke's band nomenclature. ${ }^{7 \mathrm{a}, \mathrm{b}}$

Snatzke, the sign of the CD band around 305 nm , which has been assigned to a metal-to-ligand charge-transfer transition, ${ }^{7 a}$ correlates with the absolute configuration of the acyclic 1,2-diol moiety in the ligating structure. ${ }^{7 \mathrm{~b}}$ The rule states that a complex of a " R " or " R, R " 1,2 -diol with dimolybdenum tetraacetate always gives rise to a negative CD band around 305 nm , whereas a complex having a " S " or " S, S " 1,2-diol always gives rise to a positive CD band around $305 \mathrm{~nm} .^{7 \mathrm{~b}}$ Thus, a positive CD band observed around 305 nm ("band IV") in the CD spectrum of $\mathbf{1}$ shown in Figure 2 leads to the assignment of the S-configuration for the chiral center (C-15) in the 1,2-dihydroxyethyl moiety. On the basis of the above evidences, the structure of compound $\mathbf{1}$ was determined to be ent-15S,16-dihyroxypimar-8(14)-en-19-oic acid.

Previous biological study on A. cordata has shown that some diterpenes isolated from A. cordata exhibited cytotoxic effects against human tumor cells. ${ }^{14}$ Thus, all the isolates (14) were evaluated for in vitro cytotoxicity against SK-OV-3 (human ovarian cancer), HL-60 (human promyelocytic leukemia), B16F10 (murine melanoma) and L1210 (murine leukemia) using the MTT assay method, ${ }^{15}$ and the results are presented in Table 2. Of the pimarane-type (1 and 2) and

Table 2. Cytotoxicity of compounds 1-4 from the aerial parts of A. cordata

Compound	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})^{a}$			
	SK-OV-3	$\mathrm{HL}-60$	B 16 F 10	L 1210
1	>30	>30	>30	>30
2	26.2 ± 1.2	29.4 ± 0.8	24.4 ± 1.4	20.1 ± 1.2
3	>30	>30	>30	>30
4	20.1 ± 1.3	22.6 ± 1.5	18.9 ± 0.9	15.8 ± 0.8
Adriamycin b	2.5 ± 0.2	2.8 ± 0.2	1.7 ± 0.1	1.4 ± 0.1

[^1]kaurane-type diterpenes ($\mathbf{3}$ and $\mathbf{4}$) tested, compounds 2 and $\mathbf{4}$ having an exomethylene group showed a moderate cytotoxicity against all the cell lines tested, with IC_{50} values ranging from 20.1 to $29.4 \mu \mathrm{~g} / \mathrm{mL}$ and from 15.8 to $22.6 \mu \mathrm{~g} /$ mL , respectively, which was well accorded with the previous study. ${ }^{14}$ Although compound $\mathbf{3}$ was known to exhibit a selective cytotoxicity against some cell lines such as 9PS (a chemically induced murine lymphocitic leukemia), A-549 (human lung carcinoma) and HT-29 (human colon adenocarcinoma), ${ }^{16}$ it did not show any significant cytotoxicity against all the cell lines tested.

Experimental Section

General Experimental Procedures. Melting point was measured on an Electrothemal apparatus. Optical rotation was measured in MeOH on a JASCO DIP-370 digital polarimeter. IR spectrum was recorded on a JASCO 100 IR spectrometer. CD spectrum was recorded in DMSO on a JASCO J-715 spectrometer. HRFABMS and EIMS data were recorded on JEOL JMS-DX 300 and Hewlett-Packard 5989B spectrometers, respectively. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded on a Bruker DRX300 spectrometer with tetramethylsilane (TMS) as internal standard. Two-dimensional (2D) NMR experiments $\left({ }^{1} \mathrm{H}^{-}{ }^{1} \mathrm{H}\right.$ COSY, HMQC and HMBC) were recorded on a Bruker Avance 600 spectrometer.
Plant Materials. The aerial parts of A. cordata were collected in November 2004, in Daejeon, Korea and identified by Prof. KiHwan Bae. A voucher specimen (CNU 1499) has been deposited in the herbarium at the College of Pharmacy, Chungnam National University, Daejeon, Korea.

Extraction and Isolation. The dried aerial parts of A. cordata (4 kg) were extracted three times with EtOH ($50 \mathrm{~L} \times$ 3) at room temperature for 3 days, filtered and concentrated to yield an EtOH extract (300 g). The EtOH extract was suspended in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$ and then partitioned successively with n-hexane ($2 \mathrm{~L} \times 3$), $\mathrm{EtOAc}(2 \mathrm{~L} \times 3)$ and n - $\mathrm{BuOH}(2 \mathrm{~L}$ $\times 3)$ to afford hexane- $(85 \mathrm{~g})$, $\mathrm{EtOAc}-(63 \mathrm{~g})$ and $\mathrm{BuOH}-$ soluble fractions (82 g), respectively.

The hexane-soluble fraction (85 g) was subjected to silica gel column chromatography ($80 \times 10.0 \mathrm{~cm}$) eluting with a stepwise gradient of n-hexane-acetone $(100: 1 \rightarrow 1: 2)$ to afford four fractions (A-D). Fraction A was rechromatographed on a silica gel column ($50 \times 5.0 \mathrm{~cm}$) using n -hexane-acetone ($50: 1$) to give compound $2(1000 \mathrm{mg})$.
The EtOAc-soluble fraction (63 g) was subjected to silica gel column chromatography ($80 \times 10.0 \mathrm{~cm}$) eluting with a stepwise gradient of $\mathrm{CHCl}_{3}-\mathrm{MeOH}(100: 1 \rightarrow 1: 2)$ to afford five fractions (E-I). Fraction F was rechromatographed on a silica gel column ($50 \times 3.5 \mathrm{~cm}$) using n-hexane-acetone ($20: 1 \rightarrow 15: 1$) to give compounds $3(20 \mathrm{mg})$ and $4(15 \mathrm{mg})$. Fraction G was further purified by silica gel column chromatography ($50 \times 2.5 \mathrm{~cm}$) using n-hexane-acetone (10:1) to afford compound $\mathbf{1}(130 \mathrm{mg})$.
ent-15S,16-Dihyroxypimar-8(14)-en-19-oic acid (1):

White amorphous powder; mp: 211-213 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-39.5^{\circ}(c$ $0.4, \mathrm{MeOH}$); IR $\gamma_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3450,2935,1695,1640$, 1460, 842; HRFABMS m/z $337.2380[\mathrm{M}+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{H}^{+}, 337.2379$); EIMS m / z (rel. int.) $336[\mathrm{M}]^{+}(5)$, 321 (27), 298 (15), 281 (17), 275 (88), 166 (29), 134 (37), 121 (100); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are listed in Table 1.
ent-Pimar-8(14),15-dien-19-oic acid (2): Colorless needles; mp: $165-166^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-120.2^{\circ}\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3400,1690,1460 ;$ FABMS $\mathrm{m} / \mathrm{z} 303$ $[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with published data. ${ }^{3}$
ent-16 α-Hydroxykauran-19-oic acid (3): White amorphous powder; mp: 275-277 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-104.4^{\circ}$ (c 1.0 , MeOH); IR $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3460,1700$; FABMS $m / z 321$ $[\mathrm{M}+\mathrm{H}]{ }^{+} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with published data. ${ }^{4}$
ent-Kaur-16-en-19-oic acid (4). White amorphous powder; mp: 178-180 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-110.5^{\circ}(c 1.0, \mathrm{MeOH})$; IR $v_{\max }$ $(\mathrm{KBr}) \mathrm{cm}^{-1}: 3450,1690,1470 ;$ FABMS $m / z 303[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with published data. ${ }^{5}$

Determination of the absolute configuration of an acyclic 1,2-diol moiety in 1 using Snatzke's method. Dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ was purchased from Fluka. DMSO, spectroscopy grade, was obtained from Fluka. According to the published procedure, ${ }^{7}$ about $1: 1$ diol-tomolybdenum mixture was prepared using $0.7 \mathrm{mg} / \mathrm{mL}$ of a chiral substrate in DMSO. Soon after mixing, the CD spectrum was recorded and its evolution monitored until stationary ($30-40 \mathrm{~min}$).

Cytotoxicity assay. The cancer cell lines (SK-OV-3, HL60, B16F10 and L1210) were maintained in RPMI 1640 which included L-glutamine (JBI) with 10% FBS (JBI) and 2% penicillin-streptomycin (GIBCO). Cells were cultured at $37{ }^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ incubator. Cytotoxicity was measured by a modified Microculture Tetrazolium (MTT) assay. ${ }^{15}$ Viable cells were seeded in the growth medium $(180 \mu \mathrm{~L})$ into 96 well microtiter plates $\left(1 \times 10^{4}\right.$ cells per each well) and incubated at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ incubator. The test sample was dissolved in DMSO and adjusted to final sample concentrations ranging from 1.875 to $30 \mu \mathrm{~g} / \mathrm{mL}$ by diluting with the growth medium. Each sample was prepared in triplicate. The final DMSO concentration was adjusted to $<0.1 \%$. After standing for $2 \mathrm{~h}, 20 \mu \mathrm{~L}$ of the test sample was added to each well. The same volume of DMSO was added to the control group well. Forty-eight hours after the test sample was added, $20 \mu \mathrm{~L}$ MTT was also added to the each well (final concentration, $5 \mu \mathrm{~g} / \mathrm{mL}$). Two hours later, the plate was centrifuged for 5 minutes at 1500 rpm , the medium was then removed and the resulting formazan crystals were dissolved with $150 \mu \mathrm{~L}$ DMSO. The optical density (O.D.) was measured at 570 nm using a Titertek microplate reader (Multiskan $\mathrm{MCC} / 340$, Flow). The IC_{50} value is defined as the concentration of sample to reduce a 50% of absorbance relative to the vehicle-treated control.

Acknowledgments. We are grateful to Korea Basic Science Institute (KBSI) for supplying the NMR spectra.

References

1. Perry, L. M. Medicinal Plants of East and Southeast Asia; The MIT Press: Cambridge, 1980.
2. Mihashi, S.; Yanagisawa, I.; Tanaka, O.; Shibata, S. Tetrahedron Lett. 1969, 21, 1683.
3. Sy, L. K.; Brown, G. D. J. Nat. Prod. 1998, 61, 907.
4. Cai, X. F.; Shen, G.; Dat, N. T.; Kang, O. H.; Lee, Y. M.; Lee, J. J.; Kim, Y. H. Arch. Pharm. Res. 2003, 9, 731
5. Tanaka, O.; Mihashi, S.; Yanagisawa, I.; Niaido, T.; Shibata, S. Tetrahedron 1972, 28, 4523.
6. Sam, N.; San-Miguel, B. Arreguy; Taran, M.; Delmond, B. Tetrahedron 1991, 47, 9187.
7. (a) Snatzke, G.; Wagner, U.; Wolff, H. P. Tetrahedron 1981, 37, 349. (b) Frelek, J.; Ikekawa, N.; Takatsuto, S.; Snatzke, G. Chirality 1997, 9, 578. (c) Frelek, J.; Geiger, M.; Voelter, W. Curr. Org. Chem. 1999, 3, 117.
8. Liu, K.; Roder, E. Planta Med. 1991, 57, 395.
9. Jiang, X.; Yunbao, M.; Yulong, X. Phytochemistry 1992, 31, 917.
10. Ma, G. X.; Yin, L.; Wang, T. S.; Pan, Y.; Guo, L. W. Pharm. Biol. 1998, 36, 66.
11. Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Phytochemistry 2001, 57, 131.
12. Cambie, R. C.; Burfitt, I. R.; Goodwin, T. E.; Wenkert, E. J. Org. Chem. 1975, 40, 3789.
13. (a) Mason, S. F. Molecular Optical Activity and the Chiral Discrimination; Cambridge University Press: Cambridge, 1982. (b) Rodger, A.; Norden, B. Circular Dichroism \& Linear Dichroism; Oxford University Press: Oxford, 1997.
14. Ryu, S. Y.; Ahn, J. W.; Han, Y. N.; Han, B. H.; Kim, S. H. Arch. Pharm. Res. 1996, 19, 77.
15. Mosmann, T. J. Immunol. Methods 1983, 65, 55.
16. Hui, Y.; Chang, C.; Smith, D. L.; McLaughlin, J. L. Pharm. Res. 1990, 7, 376.

[^0]: ${ }^{a}$ Assignments made on the basis of DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC and HMBC experiments.

[^1]: ${ }^{a}$ The IC_{50} value is defined as the concentration of sample to reduce a 50% of absorbance relative to the vehicle-treated control and the values represent the mean \pm SD of three individual experiments. ${ }^{b}$ Positive control.

