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In a previous paper1 the author and his coworkers have
obtained analytic results for the phase changes of the
forward-scattered light in a nonpolar chiral fluid, when the
incident light is completely linearly polarized above (or
below) the horizontal at 45o, using the formalism given by
Barron2 and the theory for the dielectric tensor developed by
Lee and Kim.3 The method is so effective that it enables us
to calculate phase changes of the forward-scattered light in
the critical region with the aid of Ornstein-Zernike theory of
the correlation function of density fluctuations. Then, the
method was extended to a binary liquid mixture composed
of a chiral solute and an achiral solvent.4 The mixture is
more suitable for experimental verification than the pure
fluid. The basic difference with the latter is that there is one
more extra variable in the mixture, i.e., the concentration
fluctuations. The results for the azimuth and ellipticity
changes were extended in the critical region that the Fisher
theory holds.5 

The purpose of the present paper is to discuss the phase
changes in the critical region of a nonpolar binary liquid
mixture, using the Fisher form for the correlation function of
concentration fluctuations.6,7 The explicit results are given
without the detailed procedures, which were derived in the
previous papers.1,4 

Results and Discussion

 The correlation function to be used is, taking the most
dominant term6,7

,  (1)

where all the notations in this paper are referred to ref. 4
except the critical exponent for correlation function of
concentration fluctuations, η. Substituting Eq. (1) into Eqs.
(19) of ref. 4 and using the similar procedure as that in ref. 4,
we may calculate the azimuth change under the condition of
ξ >> a and ellipticity change.

(A) The ellipticity change
The ellipticity change is given as

,  (2)

where 

, (3)

  ×

 

 

 . (4)

Using the following relation for a positive quantity x

,  (5)

it can be easily seen that as , the above result reduces
to that of Eq. (23) in ref. 4. The above result is so
complicated that let us consider two limiting cases. If the
system is in the critical region far from the critical point, the
ellipticity change becomes 

× ,  if  p << 1 (6)

The above result, which is just the same as that in ref. 4, is
proportional to and diverges as the isothermal compressi-
bility coefficient, becomes divergent. When the system is
extremely close to the critical point, we have

.

if  p>>1. (7)

The ellipticity change in the extreme critical point behaves
~ω3(n0ξω)η, whereas it in a fluid satisfying the Ornstein-
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Zernike theory shows logarithmic divergence, ~ω3 ln(n0ξω).
(B) The azimuth change, ∆θ(ω) in the critical region may

be separated into three parts

 (8) 

The first term  is due to the molecular contribution
given by

.  (9) 

The second term  is 

× ,  (10) 

with 

,  (11)

where

 (12)

When η = 0, the approximate value of the function is
 and is of order 1 for 

.  is also of the order 1 for 
and 0 < η < 1. The last term in Eq. (8) is 

,  (13)

where  is given in Eq. (34) of ref. 4. As discussed in
ref. 4,  is dominant over  in the case that
the system is far from the critical point. As the system
approaches to the critical point,  becomes more
important. If 1 << p << | t |−1, we have

.

(14)

The magnitude of  may become comparable to or
larger than . It is due to the indirect coupling
between two fluctuating parts of dipole densities via the
equilibrium part of quadrupole density in the middle. In the
extreme case where p| t | >> 1, we have 

.
 (15)

The above result is independent of . Its magnitude may
become comparable to or larger than the term due to the
molecular contribution, , depending on the
magnitude of  .

Let us conclude some important results:
(1). The ellipticity change, where the system is far from

the critical point, is proportional to ω5 and diverges as the
isothermal compressibility coefficient becomes divergent.

(2). When the system is extremely close to the critical
point, the ellipticity change behaves ~ω3(n0ξω)η, whereas it
in a fluid satisfying the Ornstein-Zernike theory shows
logarithmic divergence, ~ω3 ln(n0ξω). 

(3). The molecular term plays the most dominant role on
the azimuth change of the scattered light in the case that the
system is far from the critical point. 

(4). As the system approaches to the critical point, the
effect of density fluctuations on the azimuth change becomes
important. In the extreme close to the critical point, the effect
is at least comparable to the molecular contribution.

(5). It is known that the value of exponent η is between 0-
0.1.6,7 In the extreme critical region we may experimentally
measure the exponent by observing the dependence of the
azimuth change on the frequency of the light.
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