A Practical Synthesis of Nicotinic Acid Derivatives by Palladium on Charcoal

Man Sik Moon, So Ha Lee, and Chan Seong Cheong*
Medicinal Chemistry Research Center, Life Sciences Division, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650, Korea
Received July 24, 2001

Keywords : Nicotinic acid, Hydrogenation, Palladium on charcoal.

Nicotinic acid derivatives containing 2-acetylnicotinic acid 3 are very important intermediates for the preparation of commercial herbicides, ${ }^{1}$ antiallergy agent, ${ }^{2}$ and for the treatment of gastric and duodenal ulcer diseases. ${ }^{3}$
2-Acetylnicotinic acid $\mathbf{3}$ has been synthesized by a number of methods. Compound $\mathbf{3}$ has been synthesized by the reflux of nicotinic acid N -oxide with acetic anhydride, treatment of 1 with $\mathrm{PCl}_{3}{ }^{4}$ or PBr_{3} or other reducing agent, and hydrolysis of 2. Secondly 8 -methylquinoline was ozonized to afford 2acetylnicotinic acid. ${ }^{5}$ Also, 6 -oxyquinoline was also ozonized to afford 2-acetyl nicotinic acid $3 .{ }^{6}$ These processes were inadequate to synthesize the acid $\mathbf{3}$ industrially. Thus we focused on the development of the low-cost synthetic method of $\mathbf{3}$, the very important intermediate for herbicides.
It was well known that nicotinic acid N-oxide reacted with acetic anhydride by an intramolecular electrophilic reaction mechanism proposed by Nagano ${ }^{7}$ to give 1.

It was published that compound $\mathbf{1}$ reduced under hydrogen atmosphere in the presence of Pd / C to give 2 without the explanation about the detailed reaction condition, ${ }^{8}$ but we obtained the unique results in the reactions of $\mathbf{1}$ with $1 \% \mathrm{Pd} /$ C, 5% or $10 \% \mathrm{Pd} / \mathrm{C}$ and $5 \% \mathrm{Pd}(\mathrm{OH})_{2}$, respectively.

A solution of compound $1(0.1 \mathrm{~g}, 0.45 \mathrm{mmol})$ in methanol

Scheme 1. Syntheses of Nicotinic Acid Derivatives.
was stirred under hydrogen atmosphere in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ (1 mass equiv., 0.1 g) or $10 \% \mathrm{Pd} / \mathrm{C}$ (1 mass equiv., 0.1 g) for 9 h at room temperature. The catalyst was removed by filtration with Celite 545, and the filtrate was evaporated under reduced pressure to give 4 in 96% yield. Also, a solution of compound $1(0.1 \mathrm{~g}, 0.45 \mathrm{mmol})$ in methanol was stirred in the presence of $5 \% \mathrm{Pd}(\mathrm{OH})_{2}(0.5$ mass equiv., 50 mg) under hydrogen atmosphere for 6 h . The solid obtained by the same method as the above work-up was purified by column chromatography on silica gel (n hexane : ethyl acetate $=4: 1$) to afford the white solid 5 in 70% yield.

Compound 1 reacted with $1 \% \mathrm{Pd} / \mathrm{C}$ (0.25 mass equiv., 25 mg) to give the deoxygenated compound $\mathbf{2}$, in which its basicity was too weak to give the deacetylated compound. In 5% or $10 \% \mathrm{Pd} / \mathrm{C}$ reaction condition, $\mathbf{1}$ was reduced to the compound having piperidine moiety, which was deacetylated by its basicity and its complexing with Pd / C to give the compound having double bond, and finally to give 4 by further reduction. In the reaction of $\mathbf{1}$ with $5 \% \mathrm{Pd}(\mathrm{OH})_{2}$, the reaction condition was so weak to give the deacetylated intermediate that $\mathbf{1}$ was reduced to only piperidine moiety 5.

In conclusion, we have developed the method that can be capable to apply for a large scale synthesis of $\mathbf{3}$ from the reaction of $\mathbf{1}$ with $1 \% \mathrm{Pd} / \mathrm{C}$. Also, we have elucidated that compound 1 reacts with 5% or $10 \% \mathrm{Pd} / \mathrm{C}$ to give 4 and with $5 \% \mathrm{Pd}(\mathrm{OH})_{2}$ to give 5 in high yield, respectively.

Experimental Section

General. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) were recorded on Varian Gemini 300 MHz spectrometer with tetramethylsilane as internal standard. IR spectra were recorded on a MIDAC 101025 FT-IR spectrometer. Melting point was determined by Thomas Hoover capillary melting point apparatus. Column chromatography was performed on Merck silica gel 60 (230-400 mesh) using appropriate solvents. TLC was carried out using glass sheets precoated with silica gel $60 \mathrm{~F}_{254}$ prepared by E. Merck.

7-Methyl-2,3,4,7-tetrahydro-1H-furo[3,4-b]pyridin-5-on (4): $\mathrm{R}_{\mathrm{f}} 0.43$ (ethyl acetate); yield 96%; mp $83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.34-3.31 (m, 2H), $2.24(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.4$, 168.1, 90.7, 73.7, 41.9, 21.2, 19.2, 17.8; IR (KBr) 3292, 1716, 1634, 1558, 1348, 1292, 1102, $1032 \mathrm{~cm}^{-1}$; Anal.
calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{1} \mathrm{O}_{2}$: C, 62.73, $\mathrm{H}, 7.24, \mathrm{~N}, 9.14$. Found: C, $62.70, \mathrm{H}, 7.25, \mathrm{~N}, 9.01$.
Acetic acid 7-methyl-5-oxo-1,2,3,4,5,7-hexahydro-furo [3,4-b]pyridin-7-yl ester (5): $\mathrm{R}_{\mathrm{f}} 0.65$ (ethyl acetate); yield 70%; mp 167-169 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.99(\mathrm{~s}, 1 \mathrm{H})$, 3.31-3.29 (m, 2H), 2.23 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.8$, 170.0, 163.7, 103.0, 92.1, 41.9, 23.0, 22.1, 20.7, 17.7; IR (KBr) 3258, 1766, 1728, 1632, 1554, 1344, 1226, 1134, $928.0 \mathrm{~cm}^{-1}$; Anal. calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{1} \mathrm{O}_{4}$: C, $56.96, \mathrm{H}$, $6.20, \mathrm{~N}, 6.63$. Found : C, $56.60, \mathrm{H}, 6.18, \mathrm{~N}, 6.47$.
Acknowledgment. This work was supported by a grant of Korea Institute of Science and Technology in Korea.

References

1. (a) Belluš, D. Lect. Heterocycl. Chem. 1987, 9, S-65. (b) Tomlin, C. The Pesticide Manual, 10th ed.; The British

Crop Protection Council and The Royal Society of Chemistry: UK, 1994; pp 397-400. (c) Shaner, D. L.; O'Conner, S. The Imidazolinone Herbicides; CRC Press: Boca Raton, 1991; pp 53-259.
2. Sherlock, M. H.; Kaminski, J. J.; Tom, W. C.; Lee, J. F.; Wong, S.-H.; Kreutner, W.; Bryant, R. W.; McPhail, A. T. J. Med. Chem. 1988, 31, 2108.
3. Terauchi, H.; Tanitame, A.; Tada, K.; Nakamura, K.; Seto, Y.; Nishikawa, Y. Chem. Pharm. Bull. 1997, 45, 1027.
4. Nagano, H.; Hamana, M.; Nawata, Y. Heterocycles 1987, 26, 1263.
5. (a) OMurchu, C. Synthesis 1989, 880. (b) Steinbauer, G.; Zimmermann, C.; Wressnegger, E.; Steinwender, E. WO 9967217 A2.
6. (a) Wibaut, J. P.; Boer, H. Rec. Trav. Chim. 1955, 74, 241. (b) Rosenheim, O.; Tafel, J. Ber. 1893, 26, 1501.
7. Nagano, H.; Nawata, Y.; Hamana, M. Chem. Pharm. Bull. 1987, 35, 4068.
8. Bain, B. M.; Saxton, J. E. Chem. Ind. 1960, 402.

