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Hydrodynamic simulations of mesoscopic solvent have been performed by multi-particle collision algorithm
in a real dimensional system without and with the random shifting of the grid. A systematic conversion of the
dimensionless units to a real dimensional system was confirmed by jump rates of solvent particles. Speed
distributions of solvent particles obtained from the simulations agreed very well with the Maxwell-Boltzmann
distributions. Solvent viscosities obtained from the simulations and from the conversion of units are exactly the
same which confirmed the correct conversion of the units once again. The calculation of the friction coefficient
of a massive Brownian particle in a mesoscopic solvent as a function of Brownian particle diameter was
examined as an example.
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Introduction

Performing hydrodynamic simulations of complex fluids
such as amphiphilic mixtures and polymer melts is a
challenging task. For these systems, mesoscopic simulation
methods are often more efficient and stable than conven-
tional computational fluid dynamics algorithms and they
have shown great promise for simulating flow in compli-
cated geometries. Examples include lattice gas automata
(LGA),1 lattice Boltzmann (LB) algorithms,2 particle-based
mesoscopic simulation techniques such as dissipative
particle dynamics (DPD).3

In the LGA method, the fluid is modeled as a collection of
particles which move along the links of a regular lattice and
interact according to well-defined collision rules. If these
collision rules preserve mass and momentum conservation,
the correct hydrodynamic behavior can be obtained at
macroscopic length scales. In the LB method, the time
development of particle distribution functions with a set of
fixed lattice velocities on a regular lattice is described by a
discretized LB equation. Both of these lattice methods are
very efficient due to the simplified collision dynamics and
strong reduction of velocity space. However, this reduction
is also their major drawback: they are not Galilean-invariant,
a problem which restricts their use to conditions in which the
flow velocity is small compared to the maximum lattice
velocity. In addition, the LB approach is subject to a number
of numerical instabilities. While off-lattice methods such as
DPD do not suffer from these drawbacks, they are often
complex and difficult to analyze analytically.

Recently Malevanets and Kapral described one such
mesoscopic approach which we shall term multi-particle
collision dynamics.4,5 The fluid is modeled by particles
whose positions and velocities are continuous variables. The
system is coarse-grained into the cells of a regular lattice and
there is no restriction on the number of particles in a cell.
The evolution of the system consists of two steps: streaming

and collision. In the streaming step, the coordinate of each
particle is incremented by its displacement during the time
step. Collisions are modeled by a stochastic rotation of the
relative velocities of every particle in each cell. The dynamics
is explicitly constructed to conserve mass, momentum, and
energy, and the collision process is the simplest consistent
with these conservation laws. It has been shown that there is
an H-theorem for the dynamics and that this procedure
yields the correct hydrodynamic equations for an ideal gas.
The mesoscopic multi-particle collision model has been
used previously to study hydrodynamic flows,6-9 cluster
dynamics,10 small n-alkane dynamics,11 polymer dynamics,12

phase segregation and colloidal suspensions,13 complex
fluids,14-16 diffusion-influenced reaction dynamics,17 friction
and diffusion of a Brownian particle,18 and friction between
two Brownian particles.19

However, all the simulation parameters are in the dimen-
sionless units. To understand as fully as possible how multi-
particle collision dynamics can be used to simulate hydro-
dynamic behavior it is necessary to convert the dimension-
less units to a real dimensional system. Therefore this paper
presents a systematic conversion of the simulation param-
eters and system properties in a real dimensional system. 

The outline of the paper is as follows. The mesoscopic
model of multi-particle collision following Malevanets and
Kapral4,5 and the random shifting of the grid6 are
summarized in Section II. We then describe the systematic
conversion of the simulation parameters and system
properties from the dimensionless units to a real dimensional
system in Section III. The results of the simulations for
speed distribution, solvent viscosity, and friction of a
massive Brownian particle are described in Section IV and
the conclusions of the paper are given in Section V.

Multi-particle Collision Algorithm and 
the Random Shifting of the Grid

Consider a set of N point-particles of mass m which move*e-mail: shlee@star.ks.ac.kr
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in continuous space with a continuous distribution of
velocities, but discretely in time. The algorithm proceeds in
two steps. In the first of these, a free streaming step, the
positions of the solvent particles at time t, ri(t), are updated
simultaneously according to 

ri (t + τ) = ri(t) + vi(t)τ, (1)

where vi(t) is the velocity of a particle and τ is the value of
the discrete time step of the solvent. The second part of the
algorithm is the collision step. The system of cubic with size
L is coarse-grained into (L/a)d cells of a d-dimensional
lattice with side a. There is no restriction on the total number
of solvent particles in each cell (although the total number of
particles in the system is conserved). Stochastic multi-
particle collisions are performed within each individual cell,
by rotating the velocity of each particle relative to the center-
of-mass velocity vcm(t) of all the particles within that cell,

vi(t) = vcm(t) + R[vi(t)−vcm(t)]. (2)

R is a rotation matrix which rotates velocities by a fixed
angle α around an axis generated randomly for each cell and
at each time step.

The aim of the collision step is to transfer momentum
between the particles while conserving the total momentum
energy of each cell. Because mass, momentum, and energy
are conserved locally the thermohydrodynamic equation of
motion are captured in the continuum limit. Hence
hydrodynamic interactions can be propagated by the solvent.
Note, however, that any molecular details of the solvent are
excluded: this allows the hydrodynamic interactions to be
modeled with minimal computational expense.

For small Λ(= λ/a, with the mean free path λ), large
numbers of particles in a given cell remains correlated over
several time steps. These correlations are changed by the
presence of flow, and Galilean-invariance is broken. One
way of removing this dependence on the macroscopic
velocity is to perform a random shift of the grid before
performing the stochastic rotation: All particles are shifted
by the same random vector with components in the interval
[−a/2, a/2] before the collision step. Particles are then shifted
back by the same amount after the collision. This shifting
procedure, in conjunction with the stochastic collision, leads
to an additional contribution to the viscosity. In the
streaming step, momentum is transferred directly from one
cell to another when particles cross cell boundaries. This
leads to a kinetic contribution to the viscosity, ηkin,
calculated previously.4,5 However, as mentioned above, there
is also a rotational contribution, ηrot. The total kinematic

viscosity therefore consists of the sum of three contributions,
η = ηkin + ηrot + ηmix, where ηmix is a cross term resulting
from both streaming and rotation. These additional
contributions are zero in the original method, but when the
random shifting procedure is applied, the rotational contri-
bution is non zero; for Λ << 1, ηrot is the dominant
contribution to the viscosity.

Conversion of Dimensionless Units 
to a Real Dimensional System

In the dimensionless system,5 m = 1, a = 1 and the number
of cells was L3 = 323 in 3-dimension. The initial solvent
distribution was generated by assigning positions randomly
within the system with an average number of particles per
unit cell ρ = 10. Thus total number of particles was N =
327680. The velocities were assigned from a uniform
distribution (−vmax ≤ vβ ≤ vmax, β = x, y, z), where vmax =
(3kBT/m)1/2. The distribution relaxed rapidly (t ~ 1000 time
steps) to the equilibrium Maxwell-Boltzmann form corre-
sponding to the temperature T. Further kBT = 1/3 and τ = 1
were chosen. In summary, m* = 1, a* = 1, ρ* = 10, (kBT)* = 1/3,
and τ* = 1 where the superscript * indicates the dimensionless
units.

For a real dimensional system, first, the mass of meso-
scopic solvent particle is chosen as m = 3.995 g/mol which is
1/10 of that of Argon atom. The length of unit cell is chosen
as a = 0.17 nm and the number density of the system is ρ =
N/V = N/L3 = 327680 / (32 × 0.17 nm)3 = 2035.4 nm−3.
Finally the temperature is chosen as T = 40.33 K. With these
fundamental parameters (m, a, and T), the value of the
discretized time step of the solvent, τ, is determined by
(kBT)* = [(kBT/(ma2/τ2)] = 1/3. Hence, 

. (3)

For T = 40.33 K, τ = 0.33878 ps.
In order to confirm that the above conversion is correct,

both simulations of dimensionless and dimensional systems
with the above simulation parameters were performed and
jump rates of particles were compared for both systems.
Jump rate is defined by the number of moving particles
within a time step, τ. For example, after a time step, if N1

particles move to the neighboring cell, N2 particles cross two
neighboring cells, and so on, jump rate is equal to N1 + 2N2 +
3N3 + …. Table 1 shows the result for the jump rate of both
systems without the random shifting of the grid. The small

τ = 
ma

2

3kBT
------------⎝ ⎠
⎛ ⎞

1/2

 =  
2.15145

T1/2
------------------- ps( )

Table 1. Jump rates for dimensionless and dimensional systems without the random shifting of the grid. Each run is averaged for 1000 time
steps. Dimensional 1, 2 and 3 represent the systems at T = 40.33, 48.4 and 85.0 K, respectively

System Run 1 Run 2 Run 3 Run 4 Average

Dimensionless 150952 150943 150945 150951 150948 ± 4
Dimensional 1 150959 150957 150958 150959 150958 ± 1
Dimensional 2 150947 150945 150950 150941 150946 ± 3
Dimensional 3 150950 150954 150955 150947 150952 ± 3
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deviation is within statistical error and we could confirm that
Eq. (3) is correct. Further confirmation for the conversion of
units will be discussed in solvent viscosity calculation in the
below.

Speed Distribution, Viscosity Calculation, 
and Friction of a Brownian Particle

We have carried out multi-particle collision simulations
for the systems of mesoscopic solvent in a real dimension at
T = 40.33, 48.4, and 85.0 K. The corresponding values of τ
are 0.33878, 0.30925, and 0.23336 ps from Eq. (3),
respectively. The equilibrium states were achieved within
1000 time steps. Table 1 contains the jump rates of solvent
particles at T = 48.4 and 85.0 K without the random shifting
of the grid.

Figure 1 compares speed distributions of mesoscopic
solvent particles from the results of the simulations and from
the Maxwell-Boltzmann distribution at T = 40.33 and 85.0
K. The two speed distributions agree very well even though
the results from the simulations were obtained from just one
configuration of mesoscopic solvent particles of N =
327680.

Solvent viscosity coefficient is obtained by5: 

, (4)

where ξ is the coordinate of a coarse-grained cell of the
system. In the dimensionless units the dimensionless
viscosity coefficient is η* = 1.97 obtained from the stress
autocorrelation function.5 To convert the dimensionless
viscosity to the real viscosity we have η = (m/a)η* with m =
3.995 g/mol, τ = 0.33878 ps and the cell length a = 0.17 nm.

Thus, η = 2.269 × 10−4 kg/m s. From the simulation for a
real dimensional system of T = 40.33 K and τ = 0.33878 ps,
the second part of Eq. (4) is obtained. In Figure 2 we present
the results of numerical simulations of the stress-stress auto-
correlation function, C(τ), and its running integral without
the random shifting of the grid. The obtained running
integral divided by 2NT is equal to 4.778 × 10−4 nm4/ps2.
The first part of Eq. (4), m2ρ/kBTτ, with m = 3.995 g/mol, ρ =
2035.4 nm−3, T = 40.33 K, and τ = 0.33878 ps gives 286.0 kg
ps/mol nm5. Combining these two parts, we obtain η =
0.13665 kg/mol ps nm = 2.269 × 10−4 kg/m s without the
random shifting of the grid, which is exactly the same as the
value of the viscosity coefficient converted from the
dimensionless viscosity coefficient η* = 1.97. Therefore the
conversion of units was confirmed once again. Further the
values of solvent viscosities at T = 48.4 and 85.0 K are
obtained as η = 2.486 × 10−4 and 3.294 × 10−4 kg/m s from
both the conversion of unites and the results of the
simulations at T = 48.4 and 85.0 K without the random
shifting of the grid, respectively.

In a previous study10 the viscosity coefficients of a
mesoscopic solvent at T = 40.33, 48.4 and 85.0 K were
estimated as η = 5.0 × 10−4, 6.5 × 10−4 and 10.0 × 10−4 kg/m
s, respectively, which are apparently inconsistent with the
above values of at the same temperatures. The main reason
for this disagreement is due to the choice of the discrete time
step as τ = 0.1 ps in the previous study10 since all the other
simulation parameters were the same for the mesoscopic
solvent. The value of τ was not determined systematically
which resulted in obtaining different η with different τ. The
choice of τ only according to Eq. (3) gives a correct
dynamics of the mesoscopic solvent.

When the random shifting procedure is applied, the shear
viscosity can be obtained in three dimensions6:

η =  
T ∞→
lim

m
2ρ

2kBTNTτ
----------------------- vxi

i j,
∑

t ,t T<
∑ t( )∆ξyivxj t′( )∆ξyj t′( )

Figure 1. Comparison of speed distribution: Maxwell-Boltzmann
speed distributions (solid line); histograms of v distributions
computed in the simulations (dotted line). The histograms are
obtained from only one configuration of mesoscopic solvent
particles.

Figure 2. The stress auto-correlation function, C(τ), and its running
integral without (black symbols) and with the random shifting of
the grid (open symbols). The circles show the computed stress
auto-correlation function and the diamonds represent the values of
the partial summation of the stress auto-correlation function. 
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, (5)

where the prime on the sum indicates that t = 0 term has the
relative weight 1/2. There are two contributions to the
reduced fluxes, namely, kinetic and rotational, so that

, (6)

where

(7)

and 

. (8)

Here, (t) = ξi(t + τ) − ξi(t) and (t) = ξi(t + τ) − ξi
s(t +

τ), where ξi(t + τ) is the cell coordinate of particle i at time t
+ τ and ξi

s(t + τ) is the corresponding shifted particle cell
coordinate. Contributions to I2

kin come from the streaming
step, whereas the collisions and shifts contribute to I2

rot.
There are corresponding kinetic, rotational, and mixed
contributions to the shear viscosity. In our real dimensional
system, performing the same MD simulation with the
random shifting of the grid, the obtained viscosity is η =
4.704 × 10−4 kg/m s at T = 40.33 K with τ = 0.33878 ps.
Figure 2 shows the results of numerical simulations of the
stress-stress auto-correlation function, C(τ), and its running
integral with the random shifting of the grid. In this case, λ =
0.17 nm and Λ = 1. The kinetic, rotational, and mixed
contributions to the shear viscosity are 2.269 × 10−4, −0.292
× 10−4, and 2.727 × 10−4 kg/m s, respectively.

As an example for the use of the real dimensional system,
the friction coefficients of a massive Brownian particle
immersed in a mesoscopic solvent have been calculated as a
function of Brownian particle diameter at T = 40.33 K,
without and with the random shifting of the grid. The
Brownian particle, fixed in the center of the simulation box,
interacts with the mesoscopic solvent particles via the
repulsive Lennard-Jones potential20 with ε = 1.00604 kJ/mol
and σ = 0.1, 0.3, 0.5, 0.7. 0.9, and 1.0 nm. The system
evolves by Newton's equations of motion which were
integrated using the velocity Verlet algorithm,21 with a time
step of dt = τ/50 = 0.0067756 ps. The simulations were
carried out in a cubic box of volume V = L3 with periodic
boundary conditions. If the volume of the Brownian particle
is VB = 4πσ3/3, V0 is defined as the volume of the system
occupied by solvent molecules, V0 = V − VB. The values of L
and N(=327680) were chosen to fix the number density of
solvent particles at ρ = 2035.4 nm−3. 

The friction coefficient of a Brownian particle can be
calculated from the time integration of the force auto-
correlation function:

, (9)

where F is the force exerted on the Brownian particle and
the momentum auto-correlation functions:

, (10)

where P is the momentum of the Brownian particle or minus
the total momentum of solvent particles since the total
momentum of the system conserves. Eqs. (9) and (10) give
three friction coefficients:  and  =

. It is found from our simulations that the decay rate
of time integration of the force auto-correlation function (ζ2/
Nm) is difficult to estimate due to its nonlinear slope and, on
the other hand, the momentum auto-correlation function
shows a regular exponential behavior which gives a well-
defined friction coefficient (ζ3/Nm). It is also found that ζ1

and ζ3 agree very well. It is most interesting that for long
times the values of ζf(t) in Eq. (9) can be obtained by the
time derivative of CP(t) in Eq. (10):

(11)

where <P(0)2> = 3kBTNm and  were
used, and vice versa: 

η = 
τ

NkBT
-------------  

t 0=

∞
∑ ′ I2 ẑ,0( ) I2 ẑ,t( )〈 | 〉

I2 ẑ,t( ) = I2
kin ẑ,t( ) + I2

rot ẑ,t( )

I2
kin ẑ,t( ) = −1

τ
---  

i
∑ vix t( )∆ξiz t( )

I2
rot ẑ,t( ) = −1

τ
---  

i
∑ ∆vix t( )∆ξiz

s t( )

∆ξi ∆ξi
s

ζf t( ) = 
1

3kBT
------------  

0

t
∫ dτ F τ( ) F 0( )⋅〈 〉

CP t( ) = 
P t( ) P 0( )⋅〈 〉

P 0( )2〈 〉
--------------------------------

ζf t( ) = ζ1e ζ2t /Nm– CP t( )
e ζ3 t/Nm–

ζf t( ) = −Nm
d
dt
-----CP t( ) = 

1
3kBT
------------ F t( ) P 0( )⋅〈 〉

= 
1

3kBT
------------  

s ∞→
lim

1
s
---  

0

s

∫ du F u t+( ) P u( )⋅

= 
1

3kBT
------------–  

s ∞→
lim

1
s
---  

0

s

∫ du F u( ) P u t+( )⋅

= 
1

3kBT
------------  

s ∞→
lim

1
s
---  

0

s

∫ du  
0

t
∫ dτF u( ) F u τ+( )⋅

= 
1

3kBT
------------  

0

t
∫ dτ F τ( ) F 0( )⋅〈 〉

P t( ) = −  
0

t
∫ dτF τ( )

Figure 3. Friction coefficients as function of σ. Circles, ζ1; solid
line, ζt; and dashed line, ζh with the random shifting of the grid,
diamonds, ζ1; dotted line, ζt; and long dashed line, ζh without the
random shifting of the grid, and dot-dashed line, ζm.
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. (12)

In Figure 3 we show the friction coefficient as function of
σ. The hydrodynamic contribution of the friction is given by
ζh = 4πησ with slip boundary condition and a rough estimate
of the microscopic contribution to the friction can be
obtained using a hard sphere binary collision model with the
collision diameter chosen to be σ: ζm = 8ρσ2(2πmkBT)1/2/3.
An estimate of the friction that accounts for both
microscopic and hydrodynamic contributions to the friction
is given by ζt

−1 = ζm
−1 + ζh

−1.22 In the case without the
random shifting of the grid (η = 2.269 × 10−4 kg/m s) the
theoretical prediction (ζt) underestimates the simulation
result (ζ1), but in the case with the random shifting of the
grid (η = 4.704 × 10−4 kg/m s) the opposite is observed.
When σ is small the microscopic contributions (ζm)
dominate the friction coefficient as expected, and as σ
increase, the hydrodynamic estimate of the friction lies close
to the simulation value (ζ1). For the largest values of σ, the
hydrodynamic contribution (ζh) to the friction agrees with
the simulation results (ζ1) better than the theoretical
prediction (ζt) in the case without the random shifting of the
grid. The overall agreement between the simulation results
and the theoretical predictions without and with the random
shifting of the grid is quite good. 

Conclusive Remarks

We have provided hydrodynamic simulations of meso-
scopic solvent by multi-particle collision algorithm in a real
dimensional system without and with the random shifting of
the grid. The system of the dimensionless units was
successfully converted to a real dimensional system. The
correct conversion was confirmed by jump rates of solvent
particles at three different temperatures. Speed distributions
of solvent particles obtained from the simulations agreed
very well with the Maxwell-Boltzmann distributions, which
means that the distribution relaxed rapidly to the equilibrium

Maxwell-Boltzmann form corresponding to the temperature
T. Solvent viscosities calculated from the results of
numerical simulations of the stress-stress auto-correlation
functions were exactly the same as those obtained from the
conversion of the units. This confirmed the correct conver-
sion of units once again. The friction coefficient of a massive
Brownian particle in a mesoscopic solvent was obtained as
function of σ. The agreement between the simulation results
and the theoretical predictions was quite good. 
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