istry.
11. Oh, J.; Kim, Y.; Won, Y. Bulletin Korean Chem. Soc. 1995, 16, 1153.
12. Ha, S. N.; Madsen, L. J.; Brady, J. W. Biopolymers 1988, 27, 1927.
13. Kim, Y.; Ohlrogge, J. B.; Prestegard, J. Biochemical Pharmacology 1990, 40, 7.
14. Kim, Y.; Prestegard, J. Biochemistry 1989, 28, 8792
15. Molecular Simulation Inc., San Diego, CA.
16. Bax, A.; Subramanial, S. J. Magn. Reson. 1986, 67, 565.
17. Ichikawa, Y.; Lin, Y.; Dumas, D. P.; Shen, G. J.; Gar-
cia-Junceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; Paulson, J. C.; Wong, C. J. Am. Chem. Soc. 1992, 114, 9283.
18. Neuhaus A.; keeler, J. J. Magn. Reson. 1986, 68, 568.
19. Bothner-By, A. A.; Stephens, R. L.; Lee, J. M.; Warren, C. D.; Jeanloz, R. W. J. Am. Chem. Soc. 1984, 106, 811.
20. Haasnoot, C. A. G.; De Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, 2783.
21. Brooks, S. R.; Bruccoleir, R. E.; Olafson, B. D.; States, D. J.; Swauninathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.

Hyperfine Interaction Integrals for NMR Chemical Shifts in 5f Paramagnetic Systems

Kee Hag Lee*, J i Young Lee, and Dong Hee Kim ${ }^{+}$
Department of Chemistry, WonKwang University, Iksan 570-749, Korea
${ }^{\dagger}$ Department of Chemistry, Kunsan National University, Kunsan 573-701, Korea

Received February 10, 1997

Abstract

To study the NMR chemical shift arising from the 5 f-electron orbital angular momentum and the 5 f-electron spin dipolar-nuclear spin angular momentum interactions, the evaluation of the hyperfine integrals has been extended to any pairs of SCF type 5 f orbitals adopting a general method which is applicable to a general vector \boldsymbol{R}, pointing in any direction in space. From the electronic wavefunctions for 5 f orbitals expressed in common coordinate system, the radial part of the hyperfine interaction integrals are derived by translating the exponential part, $r^{2} \exp (-2 \beta r)$, in terms of $\boldsymbol{R}, \boldsymbol{r}_{\mathrm{N}}$ and the modified Bessel functions. The radial integals for 5 f orbitals are tabulated in analytical forms. When two of the hyperfine integrals along the (100), (010), (001), (110), and (111) axes are calculated using the derived radial integrals, the calculated values for the 5 f system change sign for R-values larger than $R \simeq 0.35 \mathrm{~nm}$. But the calculated values for the 4 f systems change sign for R -values larger than $\mathrm{R} \simeq 0.20 \mathrm{~nm}$.

Introduction

In the past two decades a substantial amount of work has been devoted toward evaluation of the contact and pseudo contact contributions to the observed isotropic shifts in the ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra of uranium (IV) organometallic compounds. ${ }^{1-5}$ Nuclei in different molecular electronic environments experience different shielding field and such differences in shielding field give rise to the chemical shifts in high resolution NMR spectroscopy. The chemical shifts are extremely important in the applications of NMR to molecular structure studies. The interpretation of the NMR shift in 5f paramagnetic systems has been based on the Fermi contact interactions and pseudo contact interactions. A large number of organometallic actinide compounds have been synthesized and their NMR spectra in solution are studied. Much of this NMR work has been reviewed by Fischer ${ }^{6}$ and by Luke and Streitwieser. ${ }^{7}$ In those cases in which the pseudo contact shift could be reliably estimated, it was found that when the pseudo contact shift was subtracted from the experimental shift a sizeable shift,
which has generally been called the contact shift, remained. The results of the pseudo contact interaction were interpreted using the dipolar approximation expressed in terms of the magnetic susceptibility components. ${ }^{8}$ But Golding et al., ${ }^{9-11,14}$ Ahn et al. ${ }^{12,13}$ and Lee and Lee et al. ${ }^{15}$ have shown that the use of such an expression may lead to serious errors in the interpretation of the NMR shift through this mechanism, especially if only the dipolar term is considered.

Since our interest is centered on the NMR shift arising from the 5 f-electron orbital angular momentum and the $5 \mathrm{f}-$ electron spin dipolar-nuclear spin angular momentum interactions for an 5 f-electron in a crystal field environment centered at $\mathrm{O}_{\mathrm{N} \mathrm{K} V \mathrm{Y} \mathrm{Nz}}$, it is necessary to evaluate the theoretical hamiltonian representing the pseudo contact part, ${ }^{10}$

$$
\begin{equation*}
H_{\mathrm{H}}=H_{\mathrm{L}}+\boldsymbol{H}_{\mathrm{D}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\mathrm{L}}=\frac{2 \mu_{0}}{4 \pi} \mathrm{~g}_{\mathrm{N}} \mu_{\mathrm{B}} \mu_{\mathrm{N}}\left\{l_{\mathrm{N}} \cdot I / r_{\mathrm{N}}^{3}\right\} \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{H}_{\mathrm{D}}=\frac{\mu_{0}}{4 \pi} \mathrm{~g}_{\mathrm{N}} \mu_{\mathrm{B}} \mu_{\mathrm{N}} \mathrm{~g}_{\mathrm{s}}\left\{\frac{3\left(\boldsymbol{r}_{\mathrm{N}} \boldsymbol{S}\right) \boldsymbol{r}_{\mathrm{N}} \boldsymbol{I}}{\boldsymbol{r}_{\mathrm{N}}^{5}}-\frac{\boldsymbol{S} \cdot \boldsymbol{I}}{\boldsymbol{r}_{\mathrm{N}}^{3}}\right\} \tag{2b}
\end{equation*}
$$

In equations (2a) and (2b), μ_{0} is the permeability constant of free space, g_{N} the nuclear g -value of the nucleus being shielded (that is, the NMR nucleus), μ_{s} the Bohr magneton, μ_{N} the nuclear magneton, g_{s} the free electron Lande' splitting factor $\left(g_{s}=2.20023 \cdots\right)$, and S the spin angular momentum of the electron. $\boldsymbol{r}_{\mathrm{N}}$ is the radius vector of the electron about the nucleus with nuclear spin angular momentum, \boldsymbol{I}. Here the first part represents the electron orbital angular momentum-nuclear spin angular momentum interaction and the second part, $\boldsymbol{H}_{\mathrm{D}}$, the electron spin dipolar-nuclear spin angular momentum interaction. Thus taken together equations (2a) and (2b) define the operators which account for pseudo contact interactions between nuclei and unpaired electrons.
The position of the nucleus on which the f-electrons are centered, with respect to the NMR nucleus N , is given by the vector \boldsymbol{R}, as shown in Figure 1.

In order to evaluate the hyperfine integrals involving $5 f$ orbitals, we adopt the general method, which is applicable to a general vector \boldsymbol{R}, pointing in any direction in space, developed by Gelding et al. ${ }^{9}$ In this method, the integrand is expressed as a function of \boldsymbol{R} and $\boldsymbol{r}_{\mathrm{N}}$ using the translation and the integration is performed in the $\mathrm{O}_{\mathrm{N}} \mathrm{X}_{\mathrm{N}} \mathrm{y}_{\mathrm{N}} \mathrm{z}_{\mathrm{N}}$ system. This method is applied to derive the required radial integrals of the hyperfine integrals to $3 \mathrm{~d}^{\mathrm{n}}$ systems, ${ }^{11} 4 \mathrm{~d}^{\mathrm{n}}$ system s, ${ }^{12} 5 \mathrm{~d}^{n}$ systems ${ }^{13}$ and 4 f systems. ${ }^{14}$ As far as we are aware no previous attempt has been made to evaluate the hyperfine integrals involving SCF 5f orbitals.
The purpose of this work is to evaluate the required radial integrals of the hyperfine integrals involving 5f orbitals which are required to investigate the NMR chemical shift in analytical form for $5 f^{n}$-electrons systems in a crystal field environment adopting the nonmultipole expansion method.

Evaluation of the required radial integrals of the hyperfine integrals

We choose a SCF type function of the form,

Figure 1. The coordinate system for calculation of the NMR chemical shift.

$$
\begin{equation*}
\phi_{l m}=\mathrm{Nr}^{\prime+1} \exp (-\beta r) \mathrm{Y}_{l m}(\theta, \phi) \tag{3}
\end{equation*}
$$

where l and m are the usual quantum numbers which have integer values, N a normalization constant, and β the optimized orbital exponent. ${ }^{16}$ Therefore the electronic wave functions in real notation for 5 f orbitals are

$$
\begin{align*}
& \left|5 f z^{3}\right\rangle=N(7 / 16 \pi)^{1 / 2} z\left(5 z^{2}-3 r^{2}\right) r \exp (-\beta r) \\
& \left|5 f x z^{2}\right\rangle=N(21 / 32 \pi)^{1 / 2} x\left(5 z^{2}-r^{2}\right) r \exp (-\beta r) \\
& \left|5 f y z^{2}\right\rangle=N(21 / 32 \pi)^{1 / 2} y\left(5 z^{2}-r^{2}\right) r \exp (-\beta r) \\
& \mid 5 f x y z>=N(105 / 4 \pi)^{1 / 2} x y z r \exp (-\beta r) \\
& \mid 5 f z\left(x^{2}-y^{2}\right)>=N(105 / 16 \pi)^{1 / 2} z\left(x^{2}-y^{2}\right) r \exp (-\beta r) \\
& \left|5 f x\left(x^{2}-y^{2}\right)\right\rangle=N(35 / 32 \pi)^{1 / 2} x\left(x^{2}-3 y\right) r \exp (-\beta r) \\
& \mid 5 f y\left(x^{2}-y^{2}\right)>=N(35 / 32 \pi)^{1 / 2} y\left(3 x^{2}-y^{2}\right) r \exp (-\beta r) \tag{4}
\end{align*}
$$

where N is the normalization constant defined by

$$
\begin{equation*}
\frac{1}{\mathbf{N}^{2}}=\int_{0}^{\infty} \mathrm{r}^{10} \exp (-2 \beta r) \mathrm{dr} \tag{5}
\end{equation*}
$$

The hyperfine interaction integrals are evaluated by expressing the electron coordinate system $\mathrm{O}_{\mathrm{xyz}}$ in the coordinate system $\mathrm{O}_{\mathrm{N}} \mathrm{X}_{\mathrm{N}} \mathrm{y}_{\mathrm{N}} \mathrm{z}_{\mathrm{N}}$ in terms of \boldsymbol{R} and $\boldsymbol{r}_{\mathrm{N}}$ using the following two mathematical identities. ${ }^{9-14}$

One, first given in the literature by Moshinsky ${ }^{17}$ in 1959, translates the harmonic polynomial $\mathrm{r}^{l} \mathrm{Y}_{l m}(\theta, \phi)$:

$$
\begin{align*}
& \mathrm{r}^{\prime} \mathrm{Y}_{l m}(\theta, \phi)=\sum_{l_{1}=0}^{l} \sum_{l_{2}=0}^{l} \sum_{m}^{l_{1}} \sum_{1=-1}^{l_{1}}(-1)^{l_{1}} \delta\left(l_{1}+l_{2}, l\right) \\
& \left.\quad \times\left\{\frac{4 \pi(2 l+1)!}{\left.2 l_{1}+1\right)!\left(2 l_{2}+1\right)!}\right\}^{1 / 2}<l_{1} l_{2} m_{1} m_{2} \right\rvert\, l_{1} l_{2} l m> \\
& \quad \times R^{l_{1} Y_{l_{1 m 1}}}(\theta, \phi) r_{N}^{l} Y_{l_{2 m 2}}\left(\theta_{N} \phi_{N}\right) \tag{6}
\end{align*}
$$

where the symbol $\delta\left(l_{1}+l_{2}, l\right)$ is the so-called kronecker delta, it has the value 1 when $l_{1}+l_{2}=l$ and the value 0 when $l_{1}+l_{2} \neq$ l, and $<l_{1} l_{2} m_{1} m_{2} \mid l_{1} l_{2} l m>$ is the Clebsch-Gordan coefficient.

Secondly, the exponential part may also be transformed into the following form:

$$
\begin{equation*}
r^{2} \exp (-2 \beta r)=4 \pi \sum_{n=0}^{\infty} h_{n}\left(\boldsymbol{R}, r_{N}\right) \sum_{h=-n}^{n} Y_{n h}^{*}(\theta, \phi) Y_{n h}\left(\theta_{N}, \phi_{N}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
h_{n}(& \left(r_{N}\right)=\left(r_{<} r_{>}\right)^{-1 / 2}\left\{r_{>}^{3} I_{n+12}\left(2 \beta r_{<}\right) K_{n-12}\left(2 \beta r_{>}\right)\right. \\
& -r_{<}^{3} I_{n+32}\left(2 \beta r_{<}\right) K_{n+12}\left(2 \beta r_{>}\right) \\
& +(4 n+12 n+1) r_{<}^{2} r_{>} I_{n+12}\left(2 \beta r_{<}\right) K_{n-12}\left(2 \beta r_{>}\right) \\
& -(4 n+3 / 2 n+1) r_{<} r_{>}^{2} I_{n+32}\left(2 \beta r_{<}\right) K_{n+12}\left(2 \beta r_{>}\right) \\
& +(2(n+1) 2 n+1) r_{<2}^{2} r_{>} I_{n+52}\left(2 \beta r_{<}\right) K_{n+32}\left(2 \beta r_{>}\right) \\
& -(2 n / 2 n+1) r_{<} r_{>}^{2} I_{n-12}\left(2 \beta r_{<}\right) K_{n-32}\left(2 \beta r_{>}\right) \tag{8}
\end{align*}
$$

where $\boldsymbol{r}_{<}$is the smaller of the pair \boldsymbol{R} and $\boldsymbol{r}_{\mathrm{N}}, \boldsymbol{r}_{\text {, }}$ is the larger of \boldsymbol{R} and \boldsymbol{r}_{N}, and I_{v} and K_{v}, s are the modified Bessel functions.

To evaluate the hyperfine interaction integrals, the integrand is expressed as a function of \boldsymbol{R} and $\boldsymbol{r}_{\mathrm{N}}$ using equations (6) and (7). For the angular part constitution, the required computer program ${ }^{18}$ are already set up. Thus we only need to derive the analytical formulas for the radial integral.

For the radial part of integrals for 5 f orbitals, we define the radial integral as

$$
\begin{equation*}
R_{\mathrm{N}}^{(L)}(t)=4 \beta^{11}(-R)^{L} \int_{0}^{\infty} r_{\mathrm{N}}^{5-L} h_{\mathrm{N}}\left(R, r_{\mathrm{N}}\right) d r \tag{9}
\end{equation*}
$$

where $t=2 \beta \mathrm{r}$ and further for convenience

$$
\begin{gather*}
U_{n}(t)=R_{n}^{(6)}(t) \\
V_{n}(t)=R_{n}^{(5)}(t) \\
W_{n}(t)=R_{n}^{(4)}(t) \\
X_{n}(t)=R_{n}^{(3)}(t) \\
Y_{n}(t)=R_{n}^{(2)}(t) \\
Z_{n}(t)=R_{n}^{(1)}(t) \\
B_{n}(t)=R_{n}^{(0)}(t) \tag{10}
\end{gather*}
$$

This definition provides a suitable notation that enables handling of the radial parts of the hyperfine integrals．From the angular parts of the hyperfine interaction integrals we obtain selection rules on n ．Due to this selection rules on n ， only a few radial integrals were required．

The required radial integrals are list in Table 1.
Since $h_{\mathrm{N}}\left(R, \boldsymbol{r}_{\mathrm{N}}\right)$ is a Green＇s function type expression，the integration was conducted in two parts，

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{R} \cdots d r_{\mathrm{N}} \text { and } \int_{R}^{\infty} \cdots d r_{\mathrm{N}}
$$

Table 1．The required radial integrals for 5f－orbitals

```
U
V
V
    4+75t/4)}
W
W
    4)}
W
        415t}\mp@subsup{\textrm{t}}{}{2}/2+2790t+1470+1470/t)
X (t) =- 攺{(3\mp@subsup{t}{}{3}/8-15t/4)+e + (t t}/32+5\mp@subsup{t}{}{4}/16+3\mp@subsup{t}{}{3}/2+15\mp@subsup{t}{}{2}/4+15t/4)
X 
        585t/2+630+630/t)}
X (t)=- 婹{(3\mp@subsup{t}{}{3}/8-225t/4+4410/t-170100/t ' }\mp@subsup{}{}{3})+\mp@subsup{\textrm{e}}{}{-t}(\mp@subsup{\textrm{t}}{}{5}/4+6\mp@subsup{\textrm{t}}{}{4}+321\mp@subsup{\textrm{t}}{}{3}/4
        2955t}\mp@subsup{\textrm{t}}{}{2}/4+19755\textrm{t}/4+23940+80640/t+170100/\mp@subsup{t}{}{2}+170100/\mp@subsup{t}{}{3})
Y
Y
        126/t)}
Y
        4+5805t/4+7560+26460/t+56700/t 2}+56700/\mp@subsup{t}{}{3})
Y
        6t+1170t2}+14100t+124110+812070/t+389400/t 2 + +13041000/
        t}+27442800/\mp@subsup{t}{}{4}+27442800/\mp@subsup{t}{}{5})
Z (t) =- 陁{(3\mp@subsup{t}{}{3}/8+15t/2-42/t)+e\mp@subsup{e}{}{-t}(\mp@subsup{t}{}{3}/8+2\mp@subsup{t}{}{2}+27t/2+42+42/t)}
Z 
        972+3672/t+8100/t 2}+8100/\mp@subsup{t}{}{3})
Z
        t}+
        7484400/t+7}+7484400/\mp@subsup{t}{}{5})
B
B
        1620/\mp@subsup{t}{}{2}+1620/\mp@subsup{t}{}{3})}
B
        2286+19206/t+106200/t + +383400/t +}+831600/\mp@subsup{t}{}{4}+831600/\mp@subsup{t}{}{5})
B
        1362160800/t ' })+\mp@subsup{e}{}{-1}(60\mp@subsup{t}{}{2}+2340t+46620+609840/t
        5681340/t }\mp@subsup{}{}{2}+38612700/\mp@subsup{t}{}{3}+18960480/\mp@subsup{t}{}{4}+643658400/\mp@subsup{t}{}{5}
        1362160800/t }\mp@subsup{}{}{6}+1362160800/\mp@subsup{t}{}{7})
```

where by taking the limit as $\varepsilon \rightarrow 0$ the singularity at the mag－ netic resonance nucleus was dealt with．

Results and Discussion

The analytical expansion formulas for $r^{2} \exp (-2 \beta r)$ of the hyperfine integrals arising from the pseudo contact in－ teraction for a 5 f system，adopting the nonmultipole ex－ pansion method are derived as shown in Table 1．The an－ gular part of f systems was reported in reference 18 ，The hy－ perfine integrals for SCF type 5 f atomic orbitals have been derived separately by expressing the spherical harmonics part in terms of the coordinate（ $\boldsymbol{R}, \boldsymbol{r}_{\mathrm{N}}$ ）of the reference point， and by translating the exponential part，$r^{2} \exp (-2 \beta r)$ ，in terms of $\boldsymbol{R}, \boldsymbol{r}_{\mathrm{N}}$ and the modified Bessel functions．Some cal－ culated $\boldsymbol{l} \cdot \boldsymbol{I}$ hyperfine interaction integrals for the 5 f system in a crystal field environment at different values of R along the（100），（010），（001），（110）and（111）axes are given in Tables 2 and 3 ．Here we choose $\beta=3.866$ ．In addition，we compare the results for the 4 f hyperfine integrals and the 5 f hyperfine integrals，respectively．

Table 2．Calculated values for $\left\langle\mathrm{f}_{\mathrm{yz}}{ }^{2}\right| l_{\mathrm{Nz}} / \boldsymbol{r}_{\mathrm{N}}{ }^{3}\left|\mathrm{f}_{\mathrm{xz}}{ }^{2}\right\rangle$ of 4 f hyperfine integrals with those of $5 f$ hyperfine integrals for specific $R-$ values along（001），（100），（010），（110），and（111）axes $(\beta=3.866)$

	4 f					5 f		
$r(\mathrm{~nm})$	$[001]$	$[100]^{\mathrm{a}}$	$[111]$	$[001]$	$[100]^{\mathrm{a}}$	$[111]$		
0.05	1.848	1.161	1.390	14.315	14.197	14.236		
0.10	1.594	1.035	1.221	13.782	13.360	13.500		
0.15	1.179	0.831	0.946	12.767	12.016	12.263		
0.20	0.489	0.569	0.541	11.068	10.225	0.497		
0.25	-0.611	0.270	-0.024	8.403	8.060	8.156		
0.30	-2.269	-0.050	-0.786	4.418	5.599	5.176		
0.35	-4.635	-0.378	-1.785	-1.301	2.922	1.477		
0.40	-7.856	-0.705	-3.062	-9.213	0.100	-3.041		
0.45	-12.071	-1.024	-4.660	-19.806	-2.809	-8.493		
0.50	-17.413	-1.332	-6.619	-33.578	-5.753	-15.002		

${ }^{\text {a }}$ Here，the calculated values along the［100］axis are the same to those along the［010］and［110］axes．

Table 3．Calculated values for $\left\langle\mathrm{f}_{z(x 2 \cdot y 2)}\right| l_{\mathrm{Nz}} / \boldsymbol{r}_{\mathrm{N}}{ }^{3}\left|\mathrm{f}_{\mathrm{xyz}}\right\rangle$ of 4 f hy－ perfine integrals with those of 5 f hyperfine integrals for specific R－values along（001），（100），（010），（110），and（111）axes（ $\beta=$ 3．866）

	4f			5 f		
$r(\mathrm{~nm})$	［001］	［010］	］［ 1111 ］	［001］	［010］${ }^{\text {a }}$［	111］
0.05	－2．958	－2．690	－2．780	－28．417	－28．499	－28．472
0.10	－2．574	－2．372	－2．444	－26．927	－27．028	－27．003
0.15	－1．962	－1．843	－0．898	－24．430	－24．540	－24．547
0.20	－1．064	－1．063	－1．091	－20．811	－20．979	－21．051
0.25	0.188	0.017	0.046	－15．929	－16．269	－16．428
0.30	1.866	1.457	1.595	－9．610	－10．306	－10．541
0.35	4.047	3.322	3.647	－1．661	－2．970	－3．197
0.40	6.809	5.684	6.291	8.129	5.884	5.843
0.45	10.228	8.620	9.616	19.984	16.419	16.862
0.50	14.382	12.211	13.703	34.132	28.812	30.164

${ }^{\text {a }}$ Here，the calculated values along the［010］axis are the same to those along the［100］and［110］axes．

As shown in Tables 2 and 3, the calculated values along the (100) axis are in agreement with those along (010) and (110) axes. The calculated values along the (001), (010), and (111) axes are different from each other for all values of R. Along the (001), (100), and (111) axes, the calculated values in 4 f and 5 f systems are found to change sign when $\mathrm{R} \simeq 0.20 \mathrm{~nm}$ and 0.35 nm , respectively. Here, the values are found to be positive for smaller R values and negative for greater R values in Table 2 From Table 3 along the (001), (010), (100), (110), and (111) axes, the calculated values in 4 f and 5 f systems also change sign when $\mathrm{R} \simeq 0.20 \mathrm{~nm}$ and 0.35 nm , respectively. But the values are negative for smaller R values and positive for greater R values.

This work is applied to investigate the paramagnetic NMR shift for 5 f systems and enables, for the first time, an estimate of errors coming from the usually used approximation.

Acknowledgment. The paper was supported by WonKwang University in 1996.

Reference

1. Edelstein, N.; La Mmr, G. N.; Mars, F.; Streitwieser, A. Jr Chem. Phys. Lett. 1971, 8, 399.
2. Streitwieser, A. Jr; Dempf, D.; La Mar, G. N.; Karraker, D. G.; Edelstein, N. J. Am. Chem. Soc. 1971, 93, 7343.
3. Streitwieser, A, Jr; Harmon, C. A. Inorg. Chem. 1973, 12, 1102.
4. Streitwieser, A. Jr; Kinsley, S. A. in Fundamental and Technical Aspects of Organo-f-Element Chemistry (T. J. Marks and I. L. Fragala, Eds.), 1985, 77-114, Reidel,

Dordrecht.
5. Orrell, K. G. Nucl. Magn. Reson. 1985, 14, 318.
6. Fischer, R. D. in Organometallics of the f-Elements (T. J. Marks and R. D. Fischer, Eds.), 1979, 337-377, Reidel, Dordrecht.
7. Luke, W. D.; Streitwieser, A, Jr in Ranthanide and Actinide Chemistry and Spectroscopy (N. M. Edmond, Ed.), ACS Symposium Series Vol. 131, pp. 93-140, American Chemical Society, Washington, D. C., 1980.
8. Kurland, R. J.; MCGarvey, B. R. J. Magn. Reson 1970, 2, 286.
9. Golding, R. M.; Pascual, R. O.; Vrbancich, J. J. Mol. Phys. 1976, 31, 731.
10. Golding, R. M.; Stubbs, L. C. J. Magn. Reson 1979, 33, 627.
11. Golding, R. M.; Stubbs, L. C. Proc. Roy. Soc. 1977, 354, 223.
12. Ahn, S.; Suh, H. C.; Lee, K. H. Bull. Kor. Chem. Soc. 1983, 4, 17.
13. Ahn, S.; Oh, S. W. J. Magn. Reson. 1987, 71, 405.
14. Golding, R. M.; Pacual, R. O.; Ahn, S. J. Magn. Reson. 1982, 46, 406.
15. (a) Lee, K. H. J. Magn. Reson. 1991, 92, 247. (b) Kim, D. H.; Lee, K. H. Bull. Kor. Chem. Soc. 1996, $17,69$. (c) Ahn, S.; Lee, K. H. J. Magn. Reson. 1986, 68, 499.
16. Clementi, E.; Raymondi, D. L.; Reinardt, W. P. J. Chem. Phys. 1968, 47, 1300.
17. Moshinsky, M. Nucl. Phys. 1959, 13, 104.
18. Ahn, S in Calculation of Some Interactions in Molecular System; Ph.D thesis, 1980, Univ. New South Wales, Australia.

