Reactivity of $\left[\mathbf{C p} * \mathbf{R h}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]$ toward Organic Thiols and Cyanate: Preparation and Structures of $\left[\mathbf{C p} * \mathbf{R h}(\mu-\mathbf{R})_{3} \mathbf{C p} * \mathbf{R h}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ $\left(\mathbf{R}=\mathrm{Ph}, i\right.$-Bu, or Allyl) and $\left[\mathrm{Cp} * \mathbf{R h}\left(\eta^{1}-\mathrm{NO}_{3}\right)(\mu \text {-NCO })\right]_{2}$

Won Seok Han and Soon W. Lee*
Department of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea Received December 17, 2002

Key Words : Thiols, Cyanate, Dinuclear rhodium, Labile nitrato, Labile triflate

Coordination chemistry of nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$and triflate $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$anions has received considerable and widespread attractions because of various bonding modes and counteranion characteristics in their metal compounds. ${ }^{1}$ A number of studies on the preparation, structure, and property have been reported for the metal-nitrate $\left(\mathrm{M}-\mathrm{ONO}_{2}\right)$ and metaltriflate $\left(\mathrm{M}-\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$ complexes, but few studies have been reported for the $\left[\mathrm{M}\left(\mathrm{ONO}_{2}\right)\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)\right]$-type complexes that possess both anionic ligands. ${ }^{2,3}$

Recently, we reported the preparation and structure of $\left[\mathrm{Cp} * \mathrm{Rh}\left(\eta^{2}-\mathrm{NO}_{3}\right)(\mathrm{OTf})\right]\left(\mathrm{Cp} *=\mathrm{C}_{5} \mathrm{Me}_{5} ; \mathrm{OTf}=\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(\mathbf{1})$ prepared from $\left[\mathrm{Cp} * \mathrm{Rh}\left(\eta^{1}-\mathrm{NO}_{3}\right)\left(\eta^{2}-\mathrm{NO}_{3}\right)\right]$ and AgOTf by substitution, which possesses two labile ligands $\left(\mathrm{NO}_{3}{ }^{-}\right.$and OTf^{-}) in a single rhodium center. ${ }^{4}$ In order to investigate the reactivity of compound $\mathbf{1}$ toward organic thiols and cyanate, we treated 1 with thiophenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}\right)$, 2-methyl-1propanethiol $\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{SH}\right)$, 2-propene-1-thiol $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right.$ $\mathrm{CH}_{2} \mathrm{SH}$), and trimethylsilyl isocyanate ($\mathrm{Me}_{3} \mathrm{SiNCO}$). Herein, we report the preparation and structures of $[\mathrm{Cp} * \mathrm{Rh}(\mu$ $\left.\mathrm{SR})_{3} \mathrm{Cp} * \mathrm{Rh}\right](\mathrm{OTf})\{\mathrm{R}=\mathrm{Ph}$ (2); i-Bu (3); allyl (4) $\}$ and $\left[\mathrm{Cp} * \operatorname{Rh}\left(\eta^{1}-\mathrm{NO}_{3}\right)(\mu-\mathrm{NCO})\right]_{2}(\mathbf{5})$.

Experimental Section

Unless otherwise stated, all reactions have been performed with standard Schlenk line and cannula techniques under argon at room temperature. $\left[\mathrm{Cp} * \mathrm{Rh}\left(\eta^{2}-\mathrm{NO}_{3}\right)(\mathrm{OTf})\right](\mathbf{1}),\left(\eta^{2}-\right.$ nitrato)(pentamethylcyclopentadienyl)(trifluoromethanesulfonato)rhodium(III), was prepared by the literature method. ${ }^{4}$ All products were prepared in a similar way and recrystallized from either dichloromethane-pentane or dichloromethanehexane.
${ }^{1} \mathrm{H}$-, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were recorded with a Varian Unity Inova 500 MHz spectrometer. IR spectra were recorded with a Nicolet Avatar 320 FTIR spectrophotometer. Elemental analyses were performed by the Korea Basic Science Institute.

Preparation of $\left[\mathbf{C p} * \mathbf{R h}(\mu \text {-SPh })_{3} \mathbf{C p} * \mathbf{R h}\right](\mathbf{O T f})$ (2). To an orange compound $\mathbf{1}(100 \mathrm{mg}, 0.22 \mathrm{mmol})$ in acetone (20 $\mathrm{mL})$ was added neat thiophenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}, 0.069 \mathrm{~mL}, 0.66\right.$ $\mathrm{mmol})$. The reaction mixture was stirred for 24 h , and then

[^0]the solvent was removed under vacuum. The resultant red solids were washed with hexane $(10 \mathrm{~mL} \times 2)$ and diethyl ether ($10 \mathrm{~mL} \times 2$), and then the solvent was removed under vacuum to give orange-red crystals of 2. $(92 \mathrm{mg}, 0.097$ $\mathrm{mmol}, 87 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.81-7.33(15 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$, $1.33\left(30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} M e_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 133.5-$ $129.0(P h), 98.1\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=6.4 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 8.89\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Rh}_{2} \mathrm{~S}_{4}\left(M_{\mathrm{r}}=952.81\right)$: C, 49.16; H, 4.76; S, 13.46. Found: C, 49.26; H, 4.83; S, 13.29. mp: $280-282^{\circ} \mathrm{C}$ (dec). IR (KBr): 3055, 2963, 2915, 1632, 1575, 1472, 1441, 1381, 1270, 1146, 1027, $636 \mathrm{~cm}^{-1}$.
Preparation of $\left[\mathbf{C p} * \mathbf{R h}(\mu-S-i-B u)_{3} \mathbf{C p} * R h\right](O T f)$ (3). Compound 1 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 2-methyl-1-propanethiol $\left(\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{SH}, 0.072 \mathrm{~mL}, 0.66 \mathrm{mmol}\right)$ were stirred to give orange-red crystals of $\mathbf{3}$. ($83 \mathrm{mg}, 0.085 \mathrm{mmol}, 76 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.28\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}-\mathrm{H}}=11.5 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CHMe}_{2}\right)$, $1.73\left(30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.70\left(3 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHMe}_{2}\right), 1.12(18 \mathrm{H}$, d, $\left.J_{\mathrm{H}-\mathrm{H}}=11.0 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CHMe} 2\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $98.0\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=10.9 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 42.0\left(\mathrm{~s}, \mathrm{SCH}_{2} \mathrm{CHMe}_{2}\right)$, $32.2\left(\mathrm{~s}, \mathrm{SCH}_{2} \mathrm{CHMe}_{2}\right), 22.5\left(\mathrm{~s}, \mathrm{SCH}_{2} \mathrm{CHMe} 2\right), 9.7\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Rh}_{2} \mathrm{~S}_{4}$ ($M_{\mathrm{r}}=977.77$): C, 41.76; H, 6.08; S, 13.12. Found: C, 42.28; H, 6.20; S, 13.21. mp: $236-238^{\circ} \mathrm{C}$. IR (KBr): 2960, 2924, 2870, 1635, 1461, 1380, 1271, 1226, 1148, 1074, 1029, $638 \mathrm{~cm}^{-1}$.
Preparation of $\left[\mathbf{C p} * \mathbf{R h}(\mu \text {-S-allyl })_{3} \mathbf{C p} * \mathrm{Rh}\right]$ (OTf) (4). Compound 1 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 2-propene-1-thiol $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{SH}, 0.056 \mathrm{~mL}, 0.66 \mathrm{mmol}\right)$ were stirred to give orange-red crystals of $4 .(77 \mathrm{mg}, 0.091 \mathrm{mmol}, 82 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.37\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHCH}_{2}\right), 1.74$ $\left(30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.69\left(3 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CHCH}_{2}\right), 1.05(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SCH}_{2} \mathrm{CHCH} H_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 97.89\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=\right.$ $6.4 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}$), $34.91\left(\mathrm{~s}, \mathrm{SCH}_{2} \mathrm{CHCH}_{2}\right), 27.50\left(\mathrm{~s}, \mathrm{SCH}_{2} \mathrm{CH}-\right.$ CH_{2}), 13.94 (s, $\mathrm{SCH}_{2} \mathrm{CHCH}_{2}$), 9.50 ($\mathrm{s}, \mathrm{C}_{5} \mathrm{Me}_{5}$). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Rh}_{2} \mathrm{~S}_{4}\left(M_{\mathrm{r}}=844.72\right)$: $\mathrm{C}, 42.65 ; \mathrm{H}, 5.37 ; \mathrm{S}$, 15.18. Found: C, 42.48 ; H, 5.24 ; S, $15.08 . \mathrm{mp}: 276-278{ }^{\circ} \mathrm{C}$ (dec.). IR (KBr): 2965, 2924, 2873, 1630, 1459, 1381, 1269, 1222, 1146, 1084, 1026, $636 \mathrm{~cm}^{-1}$.

Preparation of $\left[\mathbf{C p *} \mathbf{R h}\left(\boldsymbol{\eta}^{1}-\mathrm{NO}_{3}\right)(\mu \text {-NCO) }]_{2}\right.$ (5). Compound 1 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) and trimethylsilyl isocyanate ($\mathrm{Me}_{3} \mathrm{SiNCO}, 0.089 \mathrm{~mL}, 0.66 \mathrm{mmol}$) were stirred to give orange-red crystals of 5 . ($66 \mathrm{mg}, 0.097 \mathrm{mmol}, 87 \%$). ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.62\left(30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} M e_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta 93.94\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{C}}=9.7 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 8.70\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Rh}_{2}\left(M_{\mathrm{r}}=684.32\right)$: C, 38.61 ; H ,

Table 1. X-ray data collection and structure refinement

	2	3. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4	5
empirical formula	$\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Rh}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Rh}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Rh}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Rh}_{2}$
fw	952.81	977.77	844.72	684.32
temperature, K	293(2)	295(2)	293(2)	293(2)
crystal system	triclinic	monoclinic	triclinic	orthorhombic
space group	$P \overline{1}$	$P 21 / c$	$P \overline{1}$	Pbca
a, \AA	11.622(2)	11.076(2)	10.906(3)	14.497(3)
b, \AA	12.473(3)	19.427(3)	12.467(3)	12.379(3)
c, \AA	16.321(4)	20.630(3)	14.276(3)	14.677(4)
α, deg	78.80(1)		102.13(1)	
β, deg	74.36(5)	98.07(1)	98.44(2)	
$\gamma, \operatorname{deg}$	62.64(2)		97.36(2)	
V, \AA^{3}	2016.5(8)	4395(1)	1851.6(8)	2634(1)
Z	2	4	2	4
$d_{\text {cal }}, \mathrm{g} \mathrm{cm}^{-3}$	1.569	1.478	1.515	1.726
μ, mm^{-1}	1.075	1.105	1.159	1.305
$F(000)$	968	2008	860	1376
$T_{\text {min }}$	0.5232	0.6775	0.6612	0.2378
$T_{\text {max }}$	0.5578	0.9072	0.9017	0.2694
2θ range (${ }^{\circ}$)	3.5-50	3.5-50	3.5-50	3.5-50
scan type	ω	ω	ω	ω
scan speed	variable	variable	variable	variable
No. of reflns measured	7316	7597	6732	2326
No. of reflns unique	6943	7590	6371	2326
No. of reflns with $I>2 \sigma(I)$	3890	5790	4197	1401
No. of params refined	489	461	407	164
Max., in $\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	0.603	0.543	0.578	0.510
Min., in $\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	-0.744	-0.499	-0.510	-0.493
GOF on F^{2}	1.008	1.017	1.045	0.966
R	0.0680	0.0533	0.0541	0.0475
$w R_{2}{ }^{\text {a }}$	0.1267	0.1225	0.1316	0.0924

$\overline{a_{w}} R_{2}=\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]^{1 / 2}$.
4.42; N, 8.19. Found: C, 38.53; H, 4.34; N, 8.12. mp: 228$230{ }^{\circ} \mathrm{C}$ (dec.). IR (KBr): 2964, 2919, 2167, 1631, 1460, $1383,1279,1161,1084,1022,804,643 \mathrm{~cm}^{-1}$.
X-ray structure determination. All X-ray data were collected with a Siemens P4 diffractometer equipped with a Mo X-ray tube. Details on crystal data and intensity data are shown in Table 1. Intensity data were empirically corrected for absorption with ψ-scan data. All calculations were carried out with the use of SHELXTL programs. ${ }^{5}$

An orange-red crystal of 2, shaped as a block of approximate dimensions $0.16 \times 0.14 \times 0.12 \mathrm{~mm}$, was used for crystal- and intensity-data collection. The unit-cell parameters suggested a triclinic lattice, and successful structural convergence was obtained in the centrosymmetric space group $P \overline{1}$. An orange-red crystal of $\mathbf{3}$, shaped as a block of approximate dimensions $0.30 \times 0.20 \times 0.18 \mathrm{~mm}$, was used. The unit-cell parameters and systematic absences, $h 0 l(l=2 n+1)$ and $0 k 0$ $(k=2 n+1)$, unambiguously indicated $P 2_{1} / c$ as a space group. An orange-red crystal of 4, shaped as a block of approximate dimensions $0.20 \times 0.18 \times 0.16 \mathrm{~mm}$, was used. The unit-cell parameters suggested a triclinic lattice, and successful structural convergence was obtained in the
centrosymmetric space group $P \overline{1}$. An orange-red crystal of 5, shaped as a block of approximate dimensions 0.12×0.10 $\times 0.08 \mathrm{~mm}$, was used. The unit-cell parameters and systematic absences, $0 k l(k=2 n+1), h 0 l(l=2 n+1)$, and $h k 0(h=2 n+$ 1), unambiguously indicated $P b c a$ as a space group. All structures were solved by direct methods. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were generated in ideal positions and refined in a riding model. The sulfur atoms of the thiolato ligands in 2-4 exhibited a structural disorder, and the best fit was obtained by considering those atoms to be distributed over two positions with the site occupation factor of 0.63:0.37 (for 2), 0.67:0.33 (for 3), or 0.67:0.33 (for 4). Selected bond lengths and bond angles are shown in Table 2.

Results and Discussion

Preparation. All products are air-stable both in solution and in the solid state. Each compound is an orange-red crystal and has been fully characterized by spectroscopy $\left({ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right.$-NMR, and IR), elemental analysis, and X-ray diffraction.

Table 2. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$)
Compound 2

Rh1-S1	$2.410(4)$	Rh1-S2	$2.373(4)$	Rh1-S3	$2.447(4)$
Rh2-S1	$2.354(4)$	Rh2-S2	$2.375(4)$	Rh2-S3	$2.419(4)$
Rh1-S1-Rh2	$86.0(1)$	Rh1-S2-Rh2	$86.3(1)$	Rh1-S3-Rh2	$83.8(1)$
S1-Rh1-S2	$79.1(1)$	S1-Rh1-S3	$78.7(1)$	S2-Rh1-S3	$77.9(1)$
S1-Rh2-S2	$80.2(1)$	S1-Rh2-S3	$80.3(1)$	S2-Rh2-S3	$78.4(1)$
Compound 3					

Rh1-S1 2.398(2) Rh1-S2 2.406(3) Rh1-S3 2.396(3)

Rh2-S1 2.388(2) Rh2-S2 2.368(2) Rh2-S3 2.362(3)
Rh1-S1-Rh2 85.42(8) Rh1-S2-Rh2 85.67(8) Rh1-S3-Rh2 86.05(8)
S1-Rh1-S2 78.42(8) S1-Rh1-S3 78.15(9) S2-Rh1-S3 78.26(8)
S1-Rh2-S2 79.35(9) S1-Rh2-S3 79.01(9) S2-Rh2-S3 79.70(9)
Compound 4

Rh1-S1	$2.386(3)$	Rh1-S2	$2.401(2)$	Rh1-S3	$2.375(3)$
Rh2-S1	$2.385(3)$	Rh2-S2	$2.384(3)$	Rh2-S3	$2.361(3)$

Rh1-S1-Rh2 85.73(9) Rh1-S2-Rh2 85.44(8) Rh1-S3-Rh2 86.53(9)
S1-Rh1-S2 77.57(9) S1-Rh1-S3 79.4(1) S2-Rh1-S3 78.41(9)
S1-Rh2-S2 77.91(9) S1-Rh2-S3 79.7(1) S2-Rh2-S3 79.00(9)
Compound 5

Rh1-N2	$2.172(6)$	Rh1-O1	$2.151(5)$	N2-C11	$1.161(9)$
$\mathrm{C} 11-\mathrm{O} 4$	$1.177(9)$	$\mathrm{O} 1-\mathrm{N} 1$	$1.296(8)$	$\mathrm{O} 2-\mathrm{N} 1$	$1.221(8)$

$\begin{array}{lllll}\mathrm{C} 1-\mathrm{O} 4 & 1.177(9) & \mathrm{O} 1-\mathrm{N} 1 \quad 1.296(8) & \mathrm{O} 2-\mathrm{N} 1 & 1.221(8)\end{array}$
O3-N1 1.247(9)
O1-Rh1-N2 80.9(2) N1-O1-Rh1 120.5(5) N2-C11-O4 179(1)

$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	$119.1(8)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 3$	$118.4(7)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	$122.5(8)$

An 18-electron, mononuclear compound $\left[\mathrm{Cp} * \mathrm{Rh}\left(\eta^{2}-\mathrm{NO}_{3}\right)\right.$ (OTf)] (1) reacts with excess (three equivalents) organic thiols to give triply thiolato-bridged, ionic, dinuclear rhodium(III) compounds of the type $\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{SR})_{3} \mathrm{Cp}^{*}\right.$ $\mathrm{Rh}](\mathrm{OTf})\{\mathrm{R}=\mathrm{Ph}(\mathbf{2}) ; i$-Bu (3); allyl (4) $\}$ (eq 1). The nitrato and triflate ligands have been replaced by the thiolates during the reaction, suggesting their labile character. The types of the thiol employed in this study are aryl (Ph), alkyl (i - Bu), and allyl $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right)$. The ability of thiolates to act as bridging ligands is well established, and many bimetallic compounds containing two bridging thiolato ligands have been reported. ${ }^{6,7}$ However, the rhodium compounds containing three bridging thiolato ligands are rare. ${ }^{8-11}$ Furthermore, the methylthiolato (SMe) and perfluorobenzenethiolato $\left(\mathrm{SC}_{6} \mathrm{~F}_{4} \mathrm{H}-p\right.$ and $\left.\mathrm{SC}_{6} \mathrm{~F}_{5}\right)$ compounds of $\mathrm{Cp} * \mathrm{Rh}$ (III) or $\mathrm{Cp} * \operatorname{Ir}(\mathrm{III})$ were previously prepared from $\left[\mathrm{Cp} * \mathrm{MCl}_{2}\right]_{2}(\mathrm{M}=\mathrm{Rh}$ or Ir$)$ and main-group metal thiolates $\left\{\mathrm{Pb}\left(\mathrm{SR}_{\mathrm{F}}\right)_{2}\right.$ or NaSMe $\}$. ${ }^{9-11}$ By contrast, our reaction system proceeds with simple organic thiols.

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra of compounds 2-4 display the correct number of peaks, splittings, and intensities associated with the two components: Cp^{*} ligands and
thiolato ligands. In ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of these compounds, the Cp^{*} methyl protons appear as a singlet at $\delta 1.33-1.74$ ppm , probably due to the symmetrically bridging mode of the thiolato ligands. It is difficult to relate the magnitude of $J_{\mathrm{Rh}-\mathrm{C}}$ to the substitutent on the thiolato ligand ($i-\mathrm{Bu}>\mathrm{Ph} \approx$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}$).

We prepared a doubly cyanato-bridged dinuclear $\mathrm{Rh}(\mathrm{III})$ compound, $\left[\mathrm{Cp} * \mathrm{Rh}\left(\eta^{1}-\mathrm{NO}_{3}\right)(\mu-\mathrm{NCO})\right]_{2}$ (5), by treating compound 1 with excess (three equivalents) trimethylsilyl isocyanate (eq 2). In this reaction, the incoming NCO^{-} appears to have replaced the OTf^{-}ligand, followed by the $\left(\eta^{2}-\mathrm{NO}_{3}\right) \rightarrow\left(\eta^{1}-\mathrm{NO}_{3}\right)$ transformation.

In ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{5}$, the $\mathrm{Cp} *$ methyl protons appear as a singlet at $\delta 1.62 \mathrm{ppm}$, probably due to the symmetrically bridging mode of the cyanato ligands. The strong IR band at $2167 \mathrm{~cm}^{-1}$, assigned to the CN bond, is consistent with those found for cyanato-bridged dinuclear Rh (III) compounds. ${ }^{12}$

Structure. The molecular structures of compounds 2-4 are shown in Figures 1-3, respectively. Compounds 2-4 are isostructural, and each one has three μ_{2}-thiolato ligands and two $\mathrm{Cp} *$ ligands. The coordination sphere of each rhodium can be described as a distorted octahedron, if the coordination number of the Cp^{*} ligand is taken to be three. In addition, the $\mathrm{Cp} *$ ligands coordinate to the rhodium metals in an eclipsed conformation. The $\mathrm{Rh} \cdots \mathrm{Rh}$ distances are in the range of $3.246(1)-3.248(1) \AA$, the Rh-S-Rh bond angles are in the range of $85.4(\mathrm{av})-.85.9^{\circ}(\mathrm{av}$.$) , and the \mathrm{S}-\mathrm{Rh}-\mathrm{S}$ bond angles are in the range of 78.7 (av.)- 79.1° (av.). These bonding

Figure 1. ORTEP drawing of 2, showing the atom-labeling scheme and 50% probability thermal ellipsoids.

Figure 2. $O R T E P$ drawing of 3.

Figure 3. ORTEP drawing of 4.
parameters are similar to those found in the closely related compounds, $\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{SMe})_{3} \mathrm{RhCp} *\right]_{2}\left[\mathrm{~W}_{3} \mathrm{~S}_{9}\right]$ and $[\mathrm{Cp} * \mathrm{Rh}-$ $\left.\left(\mu-\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{RhCp}^{*}\right]\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] .{ }^{9-11}$

The molecular structure of compound $\mathbf{5}$ is shown in Figure 4. Compound $\mathbf{5}$ has two bridging cyanato and two terminal nitrato ligands. The coordination sphere of each rhodium can be described as a distorted octahedron. The two Cp* ligands are trans to each other and staggered. The cyanato ligands are essentially linear with the N-C-O bond angle of $179(1)^{\circ}$. The Rh $\cdots \mathrm{Rh}$ distance in compound $\mathbf{5}$ is $3.353(1) \AA$.

In summary, we have prepared three triply thiolato-bridged dirhodium compounds of the type $\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{SR})_{3} \mathrm{Cp} * \mathrm{Rh}\right]$ (OTf) $(\mathrm{R}=\mathrm{Ph} ; i$ - Bu ; allyl) and one doubly cyanato-bridged dirhodium compound, $\left[\mathrm{Cp} * \operatorname{Rh}\left(\eta^{1}-\mathrm{NO}_{3}\right)(\mu-\mathrm{NCO})\right]_{2}$, by treating $\left[\mathrm{Cp} * \mathrm{Rh}\left(\eta^{2}-\mathrm{NO}_{3}\right)(\mathrm{OTf})\right]$ with the corresponding organic thiols and cyanate. These results suggest that the nitrato and triflate ligands in compound $\mathbf{1}$ are labile enough to be readily

Figure 4. $O R T E P$ drawing of 5.
replaced by organic thiols and cyanate. A further study on the reactivity of $\mathbf{1}$ is under progress.

Supplementary material. Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data Center, CCDC No. 191154 for 2, 191155 for $\mathbf{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 191156$ for $\mathbf{4}$, and 199516 for 5. Copies of this information may be obtained free of charge from: The director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; E-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc. cam.ac.uk).

Acknowledgement. This work was supported by the 63 Research Fund of Sungkyunkwan University (2001-2002).

References

1. Hathaway, B. J. In Comprehensive Organometallic Chemistry; Gillard, R. D.; McClevery, J. A.; Wilkinson, G., Eds.; Pergamon Press: Oxford, England, 1987; Vol. 2, pp 413-434.
2. Hitchman, M. A.; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55.
3. Fish, R. H. Coord. Chem. Rev. 1999, 185-186, 569.
4. Han, W. S.; Lee, S. W. Inorg. Chim. Acta 2002, in press.
5. Bruker SHELXTL, Structure Determination Software Programs; Bruker Analytical X-ray Instruments Inc.: Madison, Wisconsin, USA, 1997.
6. Blower, P. J.; Dilworth, J. R. Coord. Chem. Rev. 1987, 76, 121.
7. Torrens, H. Coord. Chem. Rev. 2000, 196, 331.
8. Connelly, N. G.; Johnson, G. A.; Kelly, B. A.; Woodward, P. J. Chem. Soc., Chem. Commun. 1977, 436.
9. Hou, Z.; Ozawa, Y.; Isobe, K. Chem. Lett. 1990, 1863.
10. Garcia, J. J.; Torrens, H.; Adams, H.; Bailey, N. A.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1991, 74.
11. Garcia, J. J.; Torrens, H.; Adams, H.; Bailey, N. A.; Shacklady, A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1993, 1529.
12. Rigby, W.; Bailey, P. M.; McCleverty, J. A.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1979, 371.

[^0]: "Corresponding author. Phone: +82-31-290-7066; Fax: +82-31-290-7075; E-mail: swlee@chem.skku.ac.kr

