Synthesis of Poly-substituted 2-Pyridones via [3+2+1] Annulation Protocol from Baylis-Hillman Adducts

Sung Hwan Kim, Sangku Lee, ${ }^{\dagger}$ Se Hee Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
${ }^{\dagger}$ Natural Medicine Research Center, KRIBB, Daejeon 305-806, Korea
Received May 28, 2008

Key Words : 2-Pyridones, Baylis-Hillman adducts, [3+2+1] Annulation, $\mathrm{NH}_{4} \mathrm{OAc}$

The synthesis of a substituted 2-pyridone ring is an area of continuing interest due to its abundance in many biologically important compounds containing this moiety. ${ }^{1-3}$ Although numerous papers have been reported on the synthesis of this class of compounds, ${ }^{1-3}$ development of a new and efficient synthetic procedure is still required.
Recently, we reported an efficient synthetic method for poly-substituted pyridines from the combination of BaylisHillman adducts (3 carbons), activated methylene compounds (2 carbons) and ammonium acetate (1 nitrogen) via $[3+2+1]$ annulation protocol in good yields, regioselectively. ${ }^{4}$ In the previous paper, we used Baylis-Hillman adducts derived from methyl vinyl ketone and obtained 2methyl pyridine derivatives. ${ }^{4}$ In continuation of our research, we intended to prepare the valuable poly-substituted 2pyridones ${ }^{1-3}$ by using the Baylis-Hillman adducts of methyl acrylate 1a as shown in Scheme 1.
The starting material 3a was synthesized from the reaction of Baylis-Hillman acetate 1a and methyl acetoacetate (2a) in 77% yield. ${ }^{5}$ The ester $\mathbf{3 a}$ indeed produced 2-pyridone 7a, albeit in low yield (16%), along with three other products, $\mathbf{4 a}$ (34%), $\mathbf{5 a}$ (7%) and $\mathbf{6 a}(5 \%)$, when subjected to the conditions previously employed for the synthesis of pyridine derivatives $\left(\mathrm{NH}_{4} \mathrm{OAc}\right.$ (3.0 equiv)/AcOH/reflux). ${ }^{4}$ Increasing
the reaction temperature or varying the solvent (propionic or butyric acid) did not improve the results. The use of $\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{NH}_{4} \mathrm{OH}$ was also not effective.
Fortunately, during the examinations we found that the use of excess amounts of $\mathrm{NH}_{4} \mathrm{OAc}$ afforded good yield of $7 \mathbf{a}$. The reaction gave much better yield of 7a (75\%), while suppressing the formation of by-products $\mathbf{4 a}(4 \%), 5$ (1$2 \%$) and $\mathbf{6 a}$ (5\%), when 3a was heated in AcOH with 20 equiv of $\mathrm{NH}_{4} \mathrm{OAc}$. The use of excess amounts of $\mathrm{NH}_{4} \mathrm{OAc}$ might be beneficial for the isomerization of $\mathbf{4 a}$ to $\mathbf{7 a},{ }^{6}$ although the reason is not clear at this stage. Encouraged by the results we prepared starting materials $\mathbf{3 b}-\mathbf{g}$ similarly from ethyl acetoacetate ($\mathbf{2 b}$), 2,4-pentanedione ($\mathbf{2 c}$), methanesulfonylacetone (2d), 1,3-cyclohexanedione (2e), deoxybenzoin ($\mathbf{2 f}$), and 1,3-indandione ($\mathbf{2 g}$) in $56-85 \%$ yields. The syntheses of $\mathbf{7 b}$-g were carried out by the same method for $7 \mathbf{a}$ and the results are summarized in Table 1.

Various 2-pyridone derivatives $\mathbf{7 b}$-g were synthesized in $64-82 \%$ yields including bicyclic (entry 5) and tricyclic compound (entry 7). In all cases trace amounts of the corresponding benzylidene compounds, alcohols, and benzoyl derivatives were observed on TLC, but we didn't isolate them except entry 1 (vide supra, Scheme 1). The formation of alcohol 5a and benzoyl derivative 6a could be explained

Scheme 1

Table 1. Synthesis of various pyridin-2-ols ${ }^{a}$
Entry
${ }^{a}$ Conditions: Substrate $\mathbf{3}$ (1.0 mmol), $\mathrm{NH}_{4} \mathrm{OAc}$ (20 equiv), AcOH, reflux, 8-72 h.
by the aerobic oxidation of $\mathbf{4 a}$ tentatively. ${ }^{7-9}$
We obtained alkylidene derivative $\mathbf{4 h}$ in low yield (37\%) when we used $\mathbf{3 h}$ as the starting material (Scheme 2). In addition, we isolated $\mathbf{8}$ ($13 \%, E / Z$ mixture) and remaining starting material $\mathbf{3 h}$ (17\%). Isomerization of the double bond of $\mathbf{4 h}$ was not effective under the reaction conditions. Although desired compound $\mathbf{7 h}$ was observed in trace amounts on TLC, we could not isolate $7 \mathbf{h}$ in pure form. Thus we made $\mathbf{7 h}(65 \%)$ by treatment of $\mathbf{4 h}$ with DBU (2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 2 h by double bond isomerization. ${ }^{6}$
In summary, we disclosed an efficient synthetic method of poly-substituted 2-pyridones from the combination of BaylisHillman adducts (3 carbons), activated methylene compounds (2 carbons) and ammonium acetate (1 nitrogen) via $[3+2+1]$
annulation protocol in good yields, in a highly regioselective fashion.

Experimental Section

Typical procedure for the synthesis of compound 3a. ${ }^{5}$ To a stirred mixture of 1a ($234 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 2a (128 $\mathrm{mg}, 1.1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(152$ $\mathrm{mg}, 1.1 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 5 h . After the usual aqueous workup and column chromatographic purification process (hexanes/ ether, $8: 1$) we obtained 3a ($224 \mathrm{mg}, 77 \%$) as colorless oil. Other compounds 3b-h were synthesized similarly in 56$85 \%$ yields. The spectroscopic data of unknown compounds $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 d}, \mathbf{3 f}, \mathbf{3 g}$, and $\mathbf{3 h}$ are as follows (The compounds

Scheme 2
$3 c^{5 f}$ and $3 e^{5 b}$ are known compounds).
Compound 3a. 77\%; colorless oil; IR (film) 1744, 1715, $1436,1260,1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.14$ (s, 3H), 3.04-3.25 (m, 2H), $3.56(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81-$ $3.86(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.42,28.72,52.07,52.24,58.06$, $128.53,128.65,128.91,129.00,134.88,141.86,167.96$, 169.63, 201.99; ESIMS m/z 289 ($\mathrm{M}^{+}-1$).

Compound 3b. 78\%; colorless oil; IR (film) 1738, 1716, 1436, 1260, $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.14$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.04-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.94-4.15(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.42(\mathrm{~m}$, $5 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.83$, 25.40, 28.66, 52.06, 58.20, 61.36, 128.54, 128.65, 129.01, 129.07, 134.90, 141.74, 168.00, 169.24, 202.10; ESIMS m/z 303 ($\mathrm{M}^{+}-1$).

Compound 3d. 85\%; colorless oil; IR (film) 1718, 1709, 1437, 1311, 1264, $1114 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 4.32-4.36 (m, 1H), 7.35-7.47 (m, 5H), 7.87 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.04,31.70,37.53,52.34,72.28$, 127.00, 128.83, 128.94, 129.16, 134.33, 143.04, 167.55, 200.93; ESIMS m/z 309 ($\mathrm{M}^{+}-1$).

Compound 3f. 81%; white solid, $\mathrm{mp} 86-87^{\circ} \mathrm{C}$; IR (film) $1704,1683,1447,1254,1205,1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 3.18-3.32(\mathrm{~m}, 2 \mathrm{H}), 3,76(\mathrm{~s}, 3 \mathrm{H}), 4.89-4.94(\mathrm{~m}$, $1 \mathrm{H})$, 7.03-7.17 (m, 7H), 7.21-7.27 (m, 3H), 7.31-7.37 (m, $2 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 30.91,51.97,52.15,127.04$, $128.09,128.25,128.42,128.51,128.65,128.70,128.76$, 130.37, 132.77, 135.36, 136.47, 138.25, 141.71, 168.64, 199.27; ESIMS m/z 369 ($\mathrm{M}^{+}-1$).

Compound 3g. 56\%; yellow oil; IR (film) 1744, 1709, $1435,1259,1214 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.13$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 7.27-7.43 (m, 5H), 7.79-7.85 (m, 2H), $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.91-$ 7.97 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 24.83,51.82$, 52.01, 123.20, 128.57, 128.59, 129.02, 129.23, 135.21, 135.54, 141.21, 141.99, 168.17, 199.44; ESIMS m/z 319 $\left(\mathrm{M}^{+}-1\right)$.

Compound 3h. 62\%; colorless oil; IR (film) 1747, 1719, $1436,1224,1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}\right) \delta 0.87-$ $0.92(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.46(\mathrm{~m}, 6 \mathrm{H}), 2.19-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.73-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 13.91,22.43,25.40,28.36,28.60,29.45,31.48$, $51.73,52.31,58.02,127.60,146.58,167.62,169.76,202.45$.
Typical procedure for the synthesis of compound 7a. A mixture of $\mathbf{3 a}(145 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(770 \mathrm{mg}, 10$ $\mathrm{mmol})$ in $\mathrm{AcOH}(4 \mathrm{~mL})$ was heated to reflux for 15 h . After the usual aqueous workup and column chromatographic purification process $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 8: 1\right)$ we obtained $7 \mathbf{7 a}$ (97 $\mathrm{mg}, 75 \%$) as a white solid. Other compounds $\mathbf{7 b}-\mathrm{g}$ and $\mathbf{4 h}$ were synthesized similarly ($37-82 \%$). Spectroscopic data of prepared compounds $7 \mathbf{7 a}-\mathbf{d}, 7 \mathrm{f}, 7 \mathrm{~g}, 4 \mathrm{a}, 5 \mathrm{5a}, \mathbf{6 a}, \mathbf{4 h}, 7 \mathrm{~h}$, and $\mathbf{8}$ are as follows (The compound $7 \mathrm{e}^{3 \mathrm{e}}$ is known).

Compound 7a. 75%; white solid, mp 216-217 ${ }^{\circ} \mathrm{C}$; IR
(KBr) 3412, 1716, 1655, 1280, 1236, $1086 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 2.52(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (s, $2 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 12.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 16.57,32.93,49.48,103.92$, 124.03, 126.20, 126.30, 126.73, 136.00, 137.81, 149.11, 160.67, 163.11; ESIMS $m / z 256\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, 70.02 ; H, 5.88; N, 5.44. Found: C, 70.29 ; H, 5.77; N, 5.26.

Compound 7b. 71%; white solid, mp 194-195 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3412, 1708, 1655, 1279, 1231, $1082 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 12.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75$ $\mathrm{MHz}) \delta 14.13,18.51,34.81,60.07,106.04,125.98,128.11$, 128.26, 128.66, 138.02, 139.78, 150.93, 162.58, 164.67; ESIMS $m / z 270\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$: C , $70.83 ;$ H, 6.32; N, 5.16. Found: C, 70.56; H, 6.54; N, 5.02.

Compound 7c. 68%; white solid, mp 184-185 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3432, 1683, 1650, 1568, 1275, $1231 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (s, $2 \mathrm{H}), 7.14-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 11.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 19.74,29.86,35.83,115.33$, 126.66, 128.20, 128.93, 129.34, 139.69, 140.70, 150.84, 162.96, 196.48; ESIMS $m / z 240\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 74.67; H, 6.27; N, 5.81. Found: C, 74.48; H, 6.03; N, 5.77.

Compound 7d. 64%; white solid, mp $266-267{ }^{\circ} \mathrm{C}$; IR (KBr) 3412, 1652, 1605, 1302, 1159, $1131 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 2.51(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (s, $2 \mathrm{H}), 7.16-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 12.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 17.94,35.64,44.92,116.83$, 126.86, 129.07, 129.50, 129.51, 136.61, 140.08, 149.69, 163.20; ESIMS $m / z 276\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$: C, 60.63; H, 5.45; N, 5.05. Found: C, 60.44; H, 5.53; N, 5.24.

Compound 7f. 82%; white solid, mp 272-273 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3415, 1652, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 300$ $\mathrm{MHz}) \delta 3.82(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.37(\mathrm{~m}, 13 \mathrm{H})$, $7.35(\mathrm{~s}, 1 \mathrm{H}), 11.77$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, 75 MHz) $\delta 35.97,126.72,127.13,128.75,128.88,129.02,129.41$, $129.65,130.10,130.45,138.85,140.78,141.40,162.70$, four carbons were overlapped; ESIMS $m / z 336\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 85.43$; H, 5.68; N, 4.15. Found: C, 85.30; H, 5.88; N, 4.26.

Compound 7g. 65%; yellow solid, mp $347-348{ }^{\circ} \mathrm{C}$; IR (KBr) 3407, 1714, 1634, 1616, 1576, 1406, $1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right)$ d 3.75 (s, 2H), 7.18-7.33 (m, $5 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{qd}, J=7.2$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 13.22 (br s, 1H), ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75$ $\mathrm{MHz}) \delta 35.58,121.08,122.81,126.15,128.37,128.91$, $130.35,130.91,131.60,133.73,134.03,136.32,139.46$, 156.94, 163.51, 188.17; ESIMS $m / z 286\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 79.43; H, 4.56; N, 4.88. Found: C, 79.62; H, 4.38; N, 4.84.

Compound 4a. 34\%; pale yellow solid, mp 142-143 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3420, 3207, 1715, 1633, 1614, 1368, 1236, 1089 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$,
$3 \mathrm{H}), 3.77-3.78(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.82 (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 19.07, 28.09, 51.40, 101.67, 125.62, 128.57, 129.02, 130.40, 135.06, 138.08, 143.95, 165.77, 167.34; ESIMS m/z 256 $\left(\mathrm{M}^{+}-1\right)$.
Compound 5a. 7\%; pale yellow solid, mp 198-199 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3436, 1716, 1649, 1433, 1289, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 2.52(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.93$ (s, $1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 11.99(\mathrm{~s}, 1 \mathrm{H}), 12.17$ (br $\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 18.49,18.63$, $51.58,51.66,68.28,82.03,105.92,126.49,126.81,126.86$, $127.52,127.92,128.02,128.28,131.92,135.44,136.84$, $138.53,144.06,151.48,152.38,161.40,161.47,165.07$, 165.21; ESIMS m/z 272 ($\mathrm{M}^{+}-1$).

Compound 6a. 5\%; white solid, mp 234-235 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3415, 1722, 1663, 1652, 1600, 1256, 1198, 1082 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta 2.62(\mathrm{~s}, 3 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 12.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 19.11,51.80,106.23,125.66$, $128.43,129.13,133.12,137.02,143.07,157.32,160.31$, 164.49, 193.38; ESIMS m/z 270 ($\mathrm{M}^{+}-1$).

Compound 4h. 37%; white solid, mp $157-158{ }^{\circ} \mathrm{C}$; IR (KBr) 3412, 3199, 1712, 1638, 1365, 1225, $1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.88-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.36(\mathrm{~m}$, $4 \mathrm{H}), 1.45-1.55(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, 3.36-3.38 (m, 2H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 6.90-6.97(\mathrm{~m}, 1 \mathrm{H}), 8.65(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.91,18.87,22.43$, 26.13, 27.83, 28.33, 31.53, 51.22, 101.65, 125.39, 142.82, 144.65, 165.45, 167.52; ESIMS m/z $250\left(\mathrm{M}^{+}-1\right)$.

Compound 7h. 65%; white solid, mp $105-106{ }^{\circ} \mathrm{C}$; IR (KBr) 3436, 1722, 1663, 1239, $1084 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 0.87-0.91(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.55-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 12.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 14.07,19.33,22.55,28.26,29.01,29.54,31.64$, $51.69,108.22,129.57,138.77,150.02,165.20,165.78$; ESIMS $m / z 250\left(\mathrm{M}^{+}-1\right)$. Anal Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 66.91; H, 8.42; N, 5.57. Found: C, 66.88; H, 8.30; N, 5.46.

Compound 8. 13% ($E / Z, 1: 1$); colorless oil; IR (KBr) 2928, 2857, 1717, $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.26-$ $1.46(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 1.5 \mathrm{H}), 2.14(\mathrm{~s}, 1.5 \mathrm{H}), 2.19(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.62(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}$, $1.5 \mathrm{H}), 3.74(\mathrm{~s}, 1.5 \mathrm{H}), 5.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.79(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 0.5 \mathrm{H})$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2007-313-C00417). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the synthesis of pyridones and their synthetic applications,
see: (a) Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Tetrahedron 2008, 64, 2979-2991. (b) Nag, S.; Madapa, S.; Batra, S. Synthesis 2008, 101-109. (c) Aubert, C.; Betschmann, P.; Eichberg, M. J.; Gandon, V.; Heckrodt, T. J.; Lehmann, J.; Malacria, M.; Masjost, B.; Paredes, E.; Vollhardt, K. P. C.; Whitener, G. D. Chem. Eur. J. 2007, 13, 7443-7465. (d) Benjahad, A.; Croisy, M.; Monneret, C.; Bisagni, E.; Mabire, D.; Coupa, S.; Poncelet, A.; Csoka, I.; Guillemont, J.; Meyer, C.; Andries, K.; Pauwels, R.; de Bethune, M.-P.; Himmel, D. M.; Das, K.; Arnold, E.; Nguyen, C. H.; Grierson, D. S. J. Med. Chem. 2005, 48, 19481964. (e) Ghosez, L.; Jnoff, E.; Bayard, P.; Sainte, F.; Beaudegnies, R. Tetrahedron 1999, 55, 3387-3400.
2. For the synthesis of pyridones using ketene dithioacetals or ketene aminals, see: (a) Mathews, A.; Anabha, E. R.; Sasikala, K. A.; Lathesh, K. C.; Krishnaraj, K. U.; Sreedevi, K. N.; Prasanth, M.; Devaky, K. S.; Asokan, C. V. Tetrahedron 2008, 64, 1671-1675. (b) Schirok, H.; Alonso-Alija, C.; Benet-Buchholz, J.; Goller, A. H.; Grosser, R.; Michels, M.; Paulsen, H. J. Org. Chem. 2005, 70, 9463-9469. (c) Fossa, P.; Menozzi, G.; Dorigo, P.; Floreani, M.; Mosti, L. Bioorg. Med. Chem. 2003, 11, 4749-4759. (d) Rastogi, R. R.; Ila, H.; Junjappa, H. J. Chem. Soc., Chem. Commun. 1975, 645-646. (e) Datta, A.; Ila, H.; Junjappa, H. J. Org. Chem. 1990, 55, 5589-5594.
3. For the synthesis of related pyridine derivatives, see: (a) Rivkin, A.; Adams, B. Tetrahedron Lett. 2006, 47, 2395-2398. (b) Guastavino, J. F.; Barolo, S. M.; Rossi, R. A. Eur. J. Org. Chem. 2006, 3898-3902. (c) Stevenson, L.; Pimlott, S. L.; Sutherland, A. Tetrahedron Lett. 2007, 48, 7137-7139. (d) Pratap, R.; Kumar, B.; Ram, V. J. Tetrahedron 2007, 63, 10309-10319. (e) Gowrisankar, S.; Na, J. E.; Lee, M. J.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 319-322.
4. Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1948-1951.
5. For the synthesis of starting materials and their synthetic applications, (a) Im, Y. J.; Kim, J. M.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 1361-1362. (b) Kim, S. C.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 147-150. (c) Gowrisankar, S.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 20972100. (d) Kim, J. N.; Kim, J. M.; Lee, K. Y. Synlett 2003, 821824. (e) Im, Y. J.; Lee, K. Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2002, 43, 4675-4678. (f) Bauchat, P.; Le Rouille, E.; Foucaud, A. Bull. Soc. Chim. Fr. 1991, 267-271.
6. Conversion of 4a into 7a could be carried out more effectively with the aid of DBU. As an example, treatment of $\mathbf{4 a}$ with DBU (2.0 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature in 2 h afforded $7 \mathbf{a}$ in 85% yield.
7. Compound 4a was easily oxidized to $\mathbf{6 a}$ with PCC (pyridinium chlorochromate) in 75% yield (2.0 equiv of $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$). Alcohol derivative 5a was also oxidized into 6a in 81% yield under the same conditions. The final compound $7 \mathbf{a}$ was reluctant to the PCC oxidation conditions. In addition, the air oxidation of 4a to $\mathbf{6 a}$ occurred slowly without PCC. ${ }^{8}$ For the similar results using PCC oxidation process, see: Kim, S. J.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 1069-1072 and further references cited therein.
8. Compound 4a was slowly converted into 6a presumably via air oxidation process. TLC monitoring of a solution of $4 \mathbf{a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 15 days showed almost complete conversion of $4 \mathbf{a}$ into $\mathbf{6 a}$, and indeed we isolated $\mathbf{6 a}$ in 90% yield.
9. For the synthesis and spectroscopic data of similar 3-benzoyl-2pyridones, see: (a) Bondavalli, F.; Bruno, O.; Presti, E. L.; Menozzi, G.; Mosti, L. Synthesis 1999, 1169-1174. (b) Hassanien, A. Z. A.; Mohamed, M. H.; Gohzlan, S. A. S. J. Chem. Res. 2005, 440-445. (c) Nohara, A.; Ishiguro, T.; Ukawa, K.; Sugihara, H.; Maki, Y.; Sanno, Y. J. Med. Chem. 1985, 28, 559-568.
