Synthesis and Structure Analysis of α and β Forms of [12] Metallacrown-6 Nickel(II) Complex: [Ni₆(SCH₂CH₂CH₃)₁₂]

Hai Lian Xiao,^{†,‡} Fang Fang Jian,^{‡,*} and Ke Jie Zhang[§]

 [†]College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China. E-mail: xiaohailian@163.com
[‡]New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China. *E-mail: ffj2003@163169.net
[§]Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China Received February 25, 2009, Accepted February 27, 2009

Two modifications of the α and β forms of propyl mercaptan nickel(II) cluster, $[Ni_6(SCH_2CH_2CH_3)_{12}]$, have been synthesized and their crystal structures have been determined by single-crystal X-ray diffraction. The alkyl groups are away from Ni₆ ring in α form whereas they are near to the Ni atom in β form. The distance of Ni-H in β form [2.576(5) Å] is much shorter than that in α form [3.101(2) Å]. In the crystal lattice of β form, the whole structure forms a flower shape.

Key Words: Polymorphism, Nickel cluster compounds, Crown compounds, Crystal structure

Introduction

Metallacrowns represent a new class of multinuclear clusters that are analogous to crown ethers in both structure and function.^{1,2} One may substitute heteroatoms, such as transition metals and nitrogen atoms, for the methylene carbon atoms of the parent ether complexes to form metallacrowns. There has been considerable interest in metallacrowns chemistry owing to potential applications in chemically modified electrodes, anion-selective separation agents, liquid-crystal precursors, and magnetic materials.³ Generally, the metallacrowns could be synthesized using multidentate ligand that could bridge two metal ions,⁴ or using bridging chalcogen ligand, such as NaSR,⁵ NaSeR,⁶ and OR anions etc.⁷ Cyclic polynuclear nickel thiolates have been known since the pioneering work by Woodward *et al.*⁸ on the structure of the hexanuclear $[Ni(\mu_2-SCH_2CH_3)_2]_6$ complex. Since that time, a considerable number of other geometrically similar cyclic [Ni(SR)₂]₆ ring-systems⁹⁻¹² that likewise contain sulfurbridged nickel hexagons and two palladium analogue^{13,14} have been prepared and structurally characterized. So far, several *tiara*-nickel thiolates have been synthesized and characterized, including cyclic tetranuclear,¹⁵ pentanuclear,^{14,16} octanuclear complexes.¹⁷ Recently, the new nickel(II) thiolates containing 9- and 11-membered ring systems, cyclo-[Ni(μ_2 -SPh)₂]₉ and cyclo-[Ni(μ_2 -SPh)₂]₁₁, have been reported.¹⁸ In this paper, we report the difference of the synthesis and structure between α and β forms of propyl mercaptan nickel(II) cluster [Ni₆(SCH₂CH₂CH₃)₁₂].

The α form is an unexpected result. When use CH₃CH₂-CH₂SH reaction with CS₂ and NaOH, we want to obtain CH₃CH₂CH₂SCS₂. Then added aqueous NiSO₄ solution to form the complex of [Ni(CH₃CH₂CH₂SCS₂)₂]. Accidentally, we obtained the structure of α form. The β form was obtained by hydrothermal method and has the same structure with the report before.¹⁹ For comparing the difference with α form, we redetermined the β form.

For α form the six nickel atoms are located at the vertices of distorted hexagon with Ni…Ni separations in the range of

Figure 1. Molecular structure for α (up) and β -form (down) along with atom labeling. The crystal of α form is in triclinic crystal system with *P*-1 space group and the crystal of β form is in trigonal crystal system with R-3 space group.

Synthesis and Structure Analysis of α and β forms

Figure 2. Polyhedron shows the double crowns comprising of nickel (II) ring and twelve μ_2 -sulfur atoms.

Figure 3. Packing diagram of α form.

2.896(2)-2.999(2) Å and vertex angle of 117.97(3)-121.27(3)°. For β form six nickel atoms are located at the vertices of almost hexagon with Ni...Ni distance of 2.926(2) Å and vertex angle of 120°. In the crystal structure of the two complexes, each nickel atom is surrounded by four S atoms of the μ_2 -SCH₂CH₂CH₃ ligands in a distorted square-planar fashion. As a result, edge-sharing NiS₄ planes connect to form a ring. The diameter of the ring, defined as the average distance between two opposing nickel atoms, are 5.873(1) Å for α form and 5.852(1) Å for β form, respectively. Two μ_2 sulfur bridges coming from two propyl mercaptan ligands connect adjacent nickel atoms. One of the μ_2 -sulfur atoms is above and the another μ_2 -S atom is below the plane through the six nickel(II) atoms. As a consequence, six nickel(II) atoms nearly show virtual C₆ symmetry, and the twelve μ_2 -S atoms form double crowns (see Fig. 2), one above and the other below the nickel ring, respectively.

Owing to geometrical restrictions introduced by the bridging sulfur atoms, the NiS₄ units are not strictly planar, with Ni-S-Ni bond angles ranging from 81.44(5) to 85.90(5)° for α form and 82.69(3), 82.99(3)° for β form, respectively. The Ni-S bond lengths are 2.199(2) to 2.230(2) Å for α form and 2.202(3) to 2.216(4) Å for β form, respectively, which are slightly longer than that found in another nickel(II) complex with square-planar coordination (2.172(2) Å)²⁰ but agreement with the similar nickel complex reported before (2.183-2.213 Å)° and (2.192-2.206 Å).¹⁹ Within the Ni₆ ring, the average Ni-Ni separations of 2.9367 for α form and 2.9258 Å for β form is significantly longer than the Ni-Ni separations between nearest neighbors in cubic close-packed nickel

Figure 4. Packing diagram of β form (the dashed are the bonds of Ni-H)

(2.492 Å) and hexagonal close-packed nickel (2.492 Å).²¹ They are also longer than the mean Ni-Ni separations in nickel metal (2.49 Å),²² but are comparable to the Ni-Ni bond lengths in other nickel clusters such as [Ni₆Se₄Cp'₅] (2.502-3.194 Å), [Ni₁₅Se₁₀(CO)₃Cp'₈] (2.523-2.948 Å; Cp' = methyl-cyclopentadienyl),²³ [Ni₆(SCH₂CH₂CH₃)₁₂] (2.919 Å)¹⁹ and [Ni₆(SCH₂-CH₂OH)₁₂] (average 2.9276 Å).⁹

Fig. 3 shows the polyhedron of distorted square-planar of Ni atoms in α form and Fig. 4 shows the packing of β -form, respectively. From Fig. 1, Fig. 3 and Fig. 4, obvious difference between the α and β structures can be found. The alkyl groups are away from Ni₆ ring in α form whereas they are near to the Ni atom in β form. The distance of Ni-H [2.576(5) Å] in β form is much shorter than that in α form [3.101(2) Å]. Through the Ni-H, six alkyls form six pseudo rings with the Ni and S atoms in β form. When placed a ball with diameter of 5.0675 Å into the Ni₆ ring of β form as center, the whole structure forms a flower-shape completed with six pseudo rings as the petal.

Experimental Section

Preparation of [Ni₆(SCH₂CH₂CH₃)₁₂].

a Form: Warm aqueous NaOH solution (1.10 mL, 50 wt%) was added in a dropwise manner to CH₃CH₂CH₂SH (1.27 mL, 0.013mmol) and carbon bisulfide (1.00 g, 0.013 mmol) in acetonitrile (10 mL) with stirring, and the mixture was refluxed for 1.5 h. The solution turned light yellow and then formed an orange-red viscous matter that dissolved in water easily. Then an excess of aqueous NiSO₄ solution (1.50 g, 8.0 mL) was added, upon which brown precipitates formed. The brown precipitate was isolated by filtration, washed with water, and dried overnight in air. Yield 95.2% based on CH₃CH₂CH₂SH. The dark green block single crystal suitable for X-ray analysis was obtained by recrystallizing this brown solid from ethylacetate solution. The C and H contents were determined by elemental analysis (Anal. Calcd. for C₃₆H₈₄-Ni₆S₁₂ (%) C 34.48, H 6.75; found C 34.35, H 6.59).

 β Form: Firstly, NaSCH₂CH₂CH₃ was prepared by reacting propyl mercaptan (1.96 mL, 0.02 mol) with EtONa (1.35 g,

0.02 mol) in dry ethanol at room temperature. The solvent was gradually removed by evaporation under vacuum until a solid product was obtained. Yield ~ 90%. Then, the NaSCH₂CH₂-CH₃ (1.47 g, 0.015 mol) is mixed with slightly excess NiSO₄ in EtOH (35 mL), and sealed in a 50 mL Teflon-lined reactor, which was heated to 120 °C for 4 hours. After cooling to room temperature, dark blue block single crystals were obtained. The C and H contents were determined by elemental analysis (Anal. Calcd. for $C_{36}H_{84}Ni_6S_{12}$ (%) C 34.48, H 6.75; found C 34.39, H 6.61). The IR spectra for these two compounds can be found in supporting information.

Conclusions

By using general solution method and hydrothermal synthetic method, the title compound $[Ni_6(SCH_2CH_2CH_3)_{12}]$ having two different crystal forms of α and β has been synthesized, respectively. In α form, the compound is in triclinic crystal system with *P*-1 space group and the alkyl groups are away from Ni₆ ring. In β form, the compound is in trigonal crystal system with *R*-3 space group and the alkyl groups near to the Ni atom, which results in the compound having a flower-shape like crystal packing along *c* axis direction.

Supplementary Material. CCDC-666901 and 666902 contain the supplementary crystallographic data for the β -form and α -form, respectively. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB21EZ, UK; fax: +44(0)1222-336033; e-mail: deposit@ccdc.cam.ac.uk]. The data of IR spectra for the two title compounds are available at http:// www.kcsnet.or.kr/bkcs or upon request from the corresponding author.

Acknowledgments. The authors would like to thank the Natural Science Foundation of Shandong Province (No. Z2007B01 and No.Y2006B08).

References

- Pecoraro, V. L.; Stemmler, A. J.; Gibeny, B. R.; Bodwin, J. J.; Wang, H.; Kampf, J. W.; Barwinski, A. *Progress in Inorganic Chemistry*; Wiley: New York, 1997; Vol. 45, p 83.
- 2. Lah, M. S.; Pecoraro, V. L. J. Am. Chem. Soc. 1989, 111, 7258.
- Lah, M. S.; Kirk, M. L.; Hatfield, W.; Pecoraro, V. L. J. Chem. Soc. Chem. Commun. 1989, 1606.
- Liu, S. X.; Lin, S.; Lin, B. Z.; Lin, C. C.; Huang, J. Q. Angew. Chem. Int. Ed. 2001, 40, 1084.
- 5. Kruger, T.; Krebs, B.; Henkel, G. Angew. Chem. Int. Ed. 1989, 28, 61.
- 6. Fenske, D.; Fischer, A. Angew. Chem. Int. Ed. 1995, 34, 307.
- Caneschi, A.; Cornia, A.; Lippard, S. J. Angew. Chem. Int. Ed. 1995, 34, 467.
- Woodward, P.; Dahl, L. F.; Abel, E. W.; Crosse, B. C. J. Am. Chem. Soc. 1965, 87, 5251.
- Jian, F. F.; Jiao, K.; Li, Y.; Zhao, P. S.; Lu, L. D. Angew. Chem. Int. Ed. 2003, 46, 5722.
- 10. Wark, T. A.; Stephan, D. W. Organometallics 1989, 8, 2836.
- 11. Mahmoudkhani, A. H.; Langer, V. polyhedron 1999, 18, 3407.
- 12. Barrera, H.; Bayon, J. C.; Suades, J.; Germain, C.; Deelerq, J. P. *polyhedron* **1984**, *3*, 969.
- 13. Gould, R. O.; Harding, M. M. J. Chem. Soc. A 1970, 875.
- 14. Koo, B. K.; Block, E.; Kang, H.; Liu, S.; Zubieta, J. *polyhedron* **1988**, *7*, 1397.
- Gaete, W.; Ros, T.; Solans, X.; Font-Atltaba, M.; Brianso, J. L. *Inorg. Chem.* **1984**, *23*, 39.
- 16. Kriege, M.; Henkel, G. Z. Naturforsch B 1987, 42, 1121.
- 17. Dance, I. G.; Scudder, M. L.; Secomb, R. Inorg. Chem. 1985, 24, 1201.
- Ivanov, S. A.; Kozee, M. A.; Merrill, W. A.; Agarwal, S.; Dahl, L. F. J. Chem. Soc. Dalton. Trans. 2002, 4105.
- Feld, H.; Leute, A.; Rading, D.; Benninghoven, A.; Henkel, G.; Kruger, T.; Krebs, K. Z. Naturforsch Teil. B 1992, 47, 929.
- Ferrari, M. B.; Capacchi, S.; Bisceglie, F.; Pelosi, G.; Tarasconi, P. Inorg. Chim. Acta 2001, 312, 81.
- Donohue, H. *The Structures of the Elements*; Wiley: New York, 1974; p 213.
- Baranov, A. I.; Kloo, L.; Olenev, A. V.; Popovkin, B. A.; Romanenko, A. I.; Shevelkov, A. V. J. Am. Chem. Soc. 2001, 123, 12375.
- 23. Fenske, D.; Hollnagel, A. Angew. Chem. Int. Ed. Eng. 1989, 28, 1390.