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Collision Energy Dependence of Vibrational Transition in (v = 5) + He
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For many years the collision dynamics of the vibrationalaction parameters. HeRds the distance between He and the
energy transfer of;lhave been studied by various experi- center of mass ok,| 8 is the angle between the molecular
mental techniques. Most of these studies have employed tlais and the direction of approach of He, and the dis-
vibrational and rotational states of the excited electroniglacement ofJbond distance from its equilibrium valde
state of § because the experiments within the excited elecWhen these two atom-atom distances are introduced in Eq.
tronic state are relatively easier than those within the groun¢il), the potential become¥(R;, R)=V(R, x 8), The
electronic state. Relatively a few workers have reported thetraightforward expansion &, in the exponent o¥/(R, x
vibrational energy transfer of the ground electronic state oB) yields the interaction potential in the form
1,(X1%5") which is of experimentaP and theoretic#l-13inter- _
est fozrg understanding of fundamental, microscopic kinetic pro- V(R, x,8)=Vo(R, 6)+Vi(R, &)t - @
cesses. where

In recent years M&t al* have reported the vibrational
excitation and deexcitation energy transfer cross sections(R 8 )= %DZ{exp[(Re— Roy/al
from _theu = 5 excitation state of,(X1%g*) resultlng from _ _2exp[(Re—R,)/2a] }
collision with He. They have measured the microscopic
cross section as functions of kinetic energy using the 1
crossed-beam technique. In their previous paFershey 1(RO)=35DZ{bi,expl(R.— R/l
interpreted the gross features of their results foHé, —CiieXp[(Re—R)/2a] }
Io+H,, and b+D- collision systems in terms of a simple
dynamical mechanism in which most of the vibrational exci- ) 12
tations come from nearly impulsive collisions along the uo=(R"-Rdcosf+3d")
steeply repulsive part of the interaction potential playing a
dominant role. For,{u = 5)+He they also interpreted their | - (R cosp —%d)/{Za(Rz—Rdcos& Le?)
experimental results using a simple théd#y.In this simple
method calculating the vibrational energy transfer probabil-
ity by perturbation theory a linear energy dependence is pre-. — (R cos9+ %d)/ {Za( R~ Rdcosh + ledz) } ete
dicted. But the experimental observations for mth, and
0s_sexhibit non-linear dependence on collision energy.

The purpose of this work is to study the kinetic energy In the present semiclassical procedure, we consider the
dependence of the vibrational excitation and deexcitationranslation to be classical and determine the collision trajec-
energy transfer ofy(u = 5)+He collision system using an tory fromVu(R, @) given in Eq. (2)i.e., RER(t) and8=6(t).
operator solution of the time dependent Schrédinger equésince thex dependent terms in Eq. (2) are responsible for
tion with both the exact collision trajectory and rotation tra-one-quantum vibrational transition, we can express the
jectory numerically from the equation of motion. Also, in Hamiltonian in terms of ladder operatoas, @) in the form
order to compare with the cross sections, we have calculated 1
the probability foru =0 — 1. H=hw(a*a+d)+{m/2mw)’ Vi@ +a).  (3)

NI

1
. Re= (R-Rdcosf+1d?)’,

NI
1

N =

Interaction Model and Transition Probability wherem and w are the reduced mass and the angular fre-
guence of 4, respectively. Then the time dependent Schro-
The potential energy betweeraind He is expressed as the dinger equation can be written as

sum of two I-He interactions:

iﬁ%l W(t)>=H(t) | wt)> @)

V(R, Ry)=3DZ{ exp[(R.—R)/&] 1)

—2exp[(R.—R)/2a]}; i= 1, 2 Since the operato&, a, a*a, andl form a close family

with respect to commutation, we look for the solution of this
equation in the forA§1”

where R1,2=[R21R(d+x)cose+;11 (d+x)312, Ry is the equilib- 02 g,(0a g(aa gl

rium separation to be determined, @dnda are the inter- |wty>=e"""" e e i > (5)
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wherel is the identity operator and ¥ represents the initial 0 (to) = Qto+Bo, (9¢)

state P(to) >. Hereg(t)'s are complex-valued functions of _ N . N - .
time to be determined for the Hamiltonian given by Eq. (4)_WhereTo—(E/u) Atofa), E is the initial collision energy. is

In Eq. (5), the product of exponential operators plays the roléhe initial vibrational energyQ is the angular velocity (rad/

of a time development operators transforming the initials)ﬁ anddo and et‘? a:e tg?] 'n't;ﬁl V|t|)rat|_on?l and ro'Fatrl]ofn ?I th
state into various states at tirneAfter the initial state has P ases, respectively. Since the classical expression for the

; ; -1in2 - 12
evolved into the asymptotic region, the transition probabilityrOtatIonaI energy obisEr=7102% we expres2= (2E4/1)"™

can be obtained by projecting onto the known asymptoti(fAt a given collision energy, we take the most probable
state f >: rotation energy for the present calculation. For example, at

E=0.02 eV,Er=6.51x10"3 eV.
P, _ = lim | <f| ¥(t)>|*= lim | <f]|
t - o t - o0

' Results and Discussion
g;(hat g (a ge(a*a g, ()1 .
e’ e et el |i>|? ©) The potential parameters employed in the calculdféhs

For0- 1,5- 4, and 5- 6, the exponential operation '€ D=52.1cm", a=0.278 A, andd=2.6635 A. Using the

gives the transition probabilities spectroscopic constants given in Ref. 20, we find the vibra-
tional energy spacingAEio, AEss, andAEss to be 213.30,
P, . ,=lim | g, e, (7a)  208.34, and 207.08 cfrespectively. We sample 1000 tra-
t - oo

jectories for various set @ and 8o, and integrate the dif-
L 2 ’ 1 3,2 ferential equations for a time step of 0.5 fs or approximately
Py = lim 5|1 + 26,8+ (1) F(O+5 9:(D (D) 1/20th the period ofIvibration. Trajectories are initiated at
+L g gl el593(1)+0,4(0)] |2 (7b) a distgnce of 15 A, and the equatiqns are integrated ur_1ti_| tra-
120 91 2 ' jectories reach at least the same distance after the collision.
In addition to the collision enerdy, the transition proba-
P, o= 1im6|[1+30:(1)ga() +3 gi(t) gz(H)+2 gi(t)gs(t)  bilities obtained above are dependent on the impact parame-
e ter b and the initial phaséo and8,. To calculate transition
+1 0%t Ay +-L of 5 [593()+9,(0] 12 (7¢ probabilities, it is necessary to make some modifications to
24 G1(1) () 735 Gi(1) D 1Gu(De e the expressions given above. First, the enErgjll have to
To determingy(t)'s, we derive a linear relation between the P& Symmetrized because it does not represent the collision
coefficients ofa*, a, a*a, andl in the Hamiltonian and those €Nergy after energy transfer. We take the symmetrized
in 3 |W(t) > /ot by substituting Eqgs. (3) and (5) in Eq. (4):  €nergy* to beEs= ;[(Ex | AEq [y E¥9? for i — f, where
AE;; is theVT energy transfer for -~ f and the upper and

q 1 lower signs are for exothermic and endothermic directions,
S = —iwg,(t) — i(2hmw) Vi), (8a)  respectively. Second, we consider the colliding partners
dt N approaching each other from noncollinear direction by intro-
dg, _ .  oR 2 (8b) ducing the impacter parameter. For this consideration, we
TR (2hme) V(). modify the collision energy a&(1-b%R*2) in the range
dg, . (8c) O<b< R. Tpus, the initial collision energy can be replaced
T by ESE, b= { [E(1-b?R*?) + AEf]Y2? + [E(1-b/R*?)]V32;
) 1 i.e., Pi_i (E)=Pi_: (E, b Jo, B0) . With these modifications,
dg. _ i, _ i(2hma) 2V (t) gu(t) (8d)  we average the probability over impact parameters from 0 to
dt 2 ’ R and over the initial phases as

Thus, g's can be determined by solving four first-order

B 5 vy 1 2T 2T
differential equations subject to the initial conditian@o) Pir(E)=(2m (MR ) IO d5°.[0 d6o

=0. These equations will be solved fg(t) numerically R 5 6 (10)
using the fourth-order Runge-Kutta method. IO 2mb db Py (£, b, &, 6).

The trajectory needed to parametehizeill be obtained The calculated values of the transition probabilities for
from the solutions of the equations of motisd?R/df=— |, - 0_1 5.4 and 5.6 are plotted in Figure 1, where the
oVIoR, mPx/dt= —aV/. 0%, andld?6/dt’= —V/ 96 for the ini-  experimental data are reproduced from Ref. 4. In order to
tial conditions (at=to): compare with normalized cross sections, we have reduced

the calculated probabilities by a factor of 0.08. As shown in
R(to):2aInE[cosh(TO/J?) Figure 1, the slopes of calculated results are in resonable
0 agreement with the experimental data. The magnitudes,

50 however, are little different. This discrepancy is understand-
—J(D/E+D)]/J(D/E) +(D/E) 0 (92)  aple from the fact that the calculated results take into

Up account one-dimensional collision trajectory. The actual
X(to) = (2o /ma?)* 2 sin(at+o) , (9b)  dynamics even for this collision system is much more com-
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On the other hand, when only collinear collisions are con-
sidered, we can sbt=0 and deflne the calculated probability
S|mply as P(E)=(2m)~ 1[ "do, J’ "d6yP;(E, &, 6,), with
Es=3 L [(ExAE)Y2+EV72. This expression leads to the rever-
sal betweerPs_, andPs_s. The values oPs_4/Ps_s from
Eq. (10) and the collineab € 0) collision are listed in Table
1. At higher collision energie®s_ 4/Ps_¢ for the collinear
collision is about 0.99, indicating that the collinear treatment
is a valid approach. But at all collision energy range the col-
linear collision probability is nearly two times that obtained
from Eg. (10) including & O collisions. Therefore, it may
be too early to conclude the validity of the collinear treat-
ment.

In summary, a semiclassical calculation using an operator
solution of the time-dependent Schrédinger equation has been
performed for the ,(u =5)+He collision system. Even
though the collision model and potential used in this study is
very simple, it can explain essential features of the vibrational
excitation and deexcitation energy transfep@f £ 5) + He.
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Figure 1. Collision energy dependence of the vibrational transitionInstitute of Basic Science of Changwon National University
probabilities. The solid curves are the present calculations. Alifor support of this work.
experimental data are reproduced from Ref. 4. Experimental data:

Oforv=5- 4, @foru=5-6;Aforv=0- 1.

plicated, but the present calculation gives the transition prob-1.
abilities which agree with experimental data, in despite of
one-dimensional collision trajectory and the simple collision 2-
model. The other point worth noting is that although there is

a large experimental scatter, the experimental resubsfar
tends to exceed that fog_ ¢ at the higher end of the colli-

sion energies. However, the calculation does not show such™
a reversal. This result can be explained in terms of the sign

of AE and the impact parametein the symmetrized energy

Es. In this calculation the collision energy is replaced by g.

Es= 4{[ E(1-y»)+AE]VHE(1-y?)]Y3 2, wherey=b/R¥. In the
case ofu=5-, 6 transitiony have to be smaller than AE/E
because in the endothermic process the sigsEas nega-

tive. As this result also brings about the reduction to the

upper integral limit fob in Eq. (10), the calculated probabil-
ity Ps_e becomes less efficient thd®_4 at the collision
energy range of 20-200 meV.

Table 1 Comparison oPs_¢/Ps_4 for the collinear collision and
the result of Eq. (10)

Ps_.4/Ps_s

E (meV) Eqg. (10) b=0
40 4.19 1.63
60 2.11 1.24
80 1.62 1.11
100 1.41 1.05
120 1.29 1.02
140 1.21 1.00
160 1.17 0.99
180 1.14 0.99
200 1.11 0.99

References

Koffend, J. B.; Wodarczyk, F. J.; Bacis, R.; Field, RIW.

Chem Phys 198Q 72, 478.

Hall, G.; Liu, K.; McAuliffe, M. J.; Giese, C. F.; Gentry,

W. R.J. ChemPhys 1983 78, 5260.

3. Hall, G,; Liu, K.; McAuliffe, M. J.; Giese, C. F.; Gentry,

W. R.J. ChemPhys 1984 81, 5577.

Ma, Z.; Jons, S. D.; Giese, C. F.; Gentry, WIRChem

Phys 1991, 94, 8608.

5. Hall, G. E.; Marinelli, W. J.; Houston, P.L.Phys Chem

1983 87, 2153.

Hall, G.; Liu, K.; McAuliffe, M. J.; Giese, C. F.; Gentry,

W. R.J. Chem Phys 1986 84, 1402.

7. Heidner, R. H. Photochem1984 25, 449.

8. Nowlin, M. L.; Heaven, M. CJ. Chem Phys 1993 99,
5654.

9. Lawrence, W. G.; Van Marter, T. A.; Nowlin, M. L,
Heaven, M. CJ. Chem Phys 1997 106, 127.

10. Pfeffer, G. AJ. Phys Chem 1987 91, 2808.

11. Schwenke, D. W.; Truhlar, D. G.Chem Phys 1984 81,

5586.

Brown, F. B.; Schwenke, D. W.; Truhlar, D. Ghea

Chim Acta 1985 68, 23.

Kim, Y. H.; Ree, T.; Shin, H. KChem Phys Lett 199Q

174, 494.

Shin, H. K.; InrDynamics of Molecular Collisioniller,

W. H., Ed.; Plenum Press: New York, U. S. A, 1976; Part

A, p 131.

Treanor, C. El. Chem Phys 1965 43, 532.

Wei, J.; Norman, B. Math. Phys 1963 4, 575.

Wilcox, R. M.J. Math. Phys 1967, 8, 962.

Shin, H. KJ. Chem Phys 1992 96, 3330.

Calvert, J. B.; Amme, R. G.Chem Phys 1966 45, 4710.

Mizushima, M. Rotating Diatomic MoleculesWiley:

New York, U. S. A., 1975; Appendix 3.

Takayanaki, KProgr. Theoret Phys 1952 8, 497.

12.

13.

14.

15.
16.
17.
18.
19.
20.

21.



