In-situ Calibration of the Hydroperoxyl Radical Using an Immobilized TiO₂ Photocatalyst in the Atmosphere

Bum Gun Kwon^a

Environmental & Whole Information System (E&WIS), #804 Byuksan Digital Valley III 212-13, Guro-3-dong Guro-gu, Seoul 152-848, Korea. E-mail: kwonbg0@daum.net Received March 18, 2007

The present study is the first report of utilizing TiO₂ photocatalyst to analytically calibrate the hydroperoxyl radical (HO₂'). An in-situ calibration method of HO₂' is proposed for air monitoring by using an 2-methyl-6-(*p*-methoxyphenyl)-3,7-dihydroimidazo-[1,2-*a*]pyrazin-3-one (MCLA)-chemiluminescence (CL) technique. In this method, HO₂' ($pK_a = 4.80$) is produced by the ultraviolet (UV) photolysis of immobilized TiO₂ using a constant flow rate of air equilibrated water, in which HO₂' is controlled by using various lengths of knotted tubing reactor (KTR). The principle of the proposed calibration is based on the experimentally determined half-life ($t_{1/2}$) of HO₂' and its empirically observed pH-dependent rate constant, k_{obs} , at a given pH. The concentration of HO₂'/O₂'⁻ is increased as pH increases. This pH dependence is due to the different disproportionative reactivities between HO₂'/O₂'⁻ and HO₂'/O₂'⁻. Experimental results indicate the practical feasibility of the approach, producing very promising method.

Key Words : Hydroperoxyl radical, In-situ calibration, TiO2, Kinetic method

Introduction

The quantitative analysis of trace hydroperoxyl radicals (HO₂[']) in the atmosphere is crucially important in studying the formation of photochemical smog through its reaction with NO to yield NO₂, which is photolyzed in the troposphere to generate O₃.¹⁻¹¹ Conventional methods of quantifying HO₂. include laser-induced fluorescence (LIF),⁵ fluorescence assay with gas expansion (FAGE),^{11,12} electron spin resonance spectroscopy coupled with matrix isolation (MIESR),^{3,11} chemical amplifier technique (CAT) by luminol CL,^{1-3,7} and peroxy radical chemical ionization mass spectroscopy (PerCIMS).¹¹ Each of these methods has certain advantages and limitations in terms of accuracy, sensitivity, special material and time demands, and environmental risks, as follows. The LIF method is highly specific for the hydroxyl radical (·OH) and exhibits a 0.004 pptv detection limit with a signal-noise ratio (S/N) = 2 in 30 s.⁵ HO₂ can also be measured after reaction with excess NO, followed by detection of the resulting ·OH by LIF at 308 nm.^{5,10} The FAGE method is an indirect measurement, as HO2 must first be converted to the hydroxyl radical through the reaction (HO₂' + NO) prior to spectroscopic detection.^{11,12} Since sufficient NO must be added to ensure rapid conversion in the short reaction time between NO addition and the 'OH excitation reaction (typically~1 ms in the fast flows employed),¹¹ however, there is a competing reaction (OH + NO). Thus, it is not possible to convert all of the HO2 into the hydroxyl radical. The MIESR method allows for direct measurement of peroxy radicals (RO2) including HO₂; however, the procedures involved with this

method are characterized by a number of limitations.^{3,11} For example, this method requires freezing ambient air in liquid nitrogen (77 K) in a vacuum chamber and using a numerical fitting procedure to determine the concentration of HO₂. Moreover, since on some occasions exceedingly high apparent RO₂['] signals have been observed in MIESR, further work is needed to identify HO2.10 With CAT, using luminol, the CL is related to the modulation in the NO₂ signal by a calibration factor equal to a combination of detector sensitivity and chain length of the chemical amplifier, giving an estimated detection limit of about 1pptv in air.³ However, the accuracy of this technique is rather poor, due to sensitivity of the chain length to conditions in the chemical amplifier and to potential interferences such as peroxyacetyl nitrate (PAN) and peroxynitric acid, which decompose to form radicals in the system.³ The PerCIMS technique was developed to measure tropospheric HO_2 and RO_2 .¹¹ For this measurement, excess NO is added to produce ·OH upon reaction with peroxy radicals. The hydroxyl radicals react rapidly with added isotopically labeled SO₂, thus imposing radioactive hazard. The PerCIMS technique has excellent sensitivity and may be able to discriminate between HO2 and RO2 by controlling the concentration of added NO and SO_2 .^{3,11}

All the aforementioned methods for measuring HO_2 ' require calibration to determine the signal observed while sampling a known HO_2 ' concentration.¹¹ Although it is possible, in principle, to measure the sensitivity of a given field instrument, the result is unreliable, as many assumptions need to be made about instrumental parameters, some of which may vary with time.^{11,13} For example, even though the vacuum-ultraviolet photolysis of water vapor using a penray mercury lamp has been widely used as a calibration method, it is highly desirable to perform this calibration in moist air to ensure that the conditions are very similar to

^aPresent address: Biofilm Engineering Laboratory, School of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742, Korea

those encountered during ambient sampling.³ Thus, water dependence to calibrate HO_2 concentration must be known, because H_2O content is quite variable in the atmosphere.

Recently, a flow injection analysis with MCLA-based CL as a specific HO2 detector using wet technique has been proposed, which is based on the CL reaction between HO₂ (aq) and MCLA as a synthetic analogue of the luciferin.¹⁰ In this method, known quantities of HO₂ (aq) in aqueous solution for calibration standards are produced from ⁶⁰Coradiolysis. However, HO2 generation utilizing ⁶⁰Co-radiolysis has required fairly specialized equipment because of the constraints imposed by its instrument design. Another difficulty in field is the performance of an accurate calibration technique due to short half-life of HO₂. For example, HO₂ rapidly disappears in acidic solutions and at room temperature.^{14,15} Importantly, all the aforementioned methods are still under development¹⁰ and requires in-situ field calibration method. For this reason, the present work aims at developing an insitu calibration method that is simple, fast, and inexpensive while overcoming many other limitations of the present methods.

In this work, we present a method for calibrating HO₂. using a wet technique based on the in-situ HO₂-generating technique and experimentally determined half-life $(t_{1/2})$ method. This novel method involves the TiO₂ photocatalyst as an in-situ radical generator, followed by the separation of HO₂['] from various reactive species generated through the photolysis of a coil-quartz tube immobilized by TiO₂ particles. The separated HO₂ is then detected using an MCLA-based CL technique, and HO_2 is quantified using a simple formula. Uniquely, the calibration method in this study does not require the introduction of known amounts of HO2 into the detector as it uses the probe as an internal standard. For a field application, the traditional calibration methods such as internal and external calibration are not appropriate choices; in some cases, they are not applicable. A new calibration method that can fulfill the demands of a field analysis is introduced in this paper. The developed method is simple, quantitative, fast, and highly sensitive.

Experimental Section

Materials. TiO₂ particles (Aldrich, 99+%), MCLA (Fluka, \geq 98.5%), ethanol (Merck, 99.8%), sodium hydroxide (GFS Chemicals, 99.999%), and hydrochloric acid (Sigma Co., 99.999%) were used without further purification. The CL reagent was a 12 μ M MCLA solution in 1:100 (v/v) ethanol/ H₂O, adjusted to pH 2.5 with HCl.¹⁰ The pH-controlled buffer solutions were adjusted to a range between 5.6 and 11 with a borate buffer and NaOH. All solutions were made with high purity deionized water from the Younglin ultrapurification system (>18 MΩ cm).

Preparation of Coil-quartz Tube Doped by TiO₂ Particles. TiO₂ particles were immobilized on the inner surface of a coil-quartz tube (inner diameter 2 mm × length 900 mm; inner surface area $\approx 2,800 \text{ mm}^2$). The coil-quartz tube was pre-cleaned using 1% nitric acid and washed with DI water

Bum Gun Kwon

Figure 1. Schematic diagram and calibration equipment for measuring HO_2'/O_2 ⁻. PP, peristaltic pump; A, immobilized TiO₂ quartz reactor; B, knotted tubing reactors (KTR); C, spiral quartz cell; D, PMT detector; E, Amplifier; F, A/D converter; PC, computer; S1, pure DW; S2, pH-controlled buffer; S3, chemiluminescent reagent solution as MCLA.

by pumping for 2 hr at 1.00 mL/min. 300 mg TiO₂ particles were added to 3 mL methanol, and stirred with a magnetic stirrer. A 0.3 mL TiO₂ suspension was gradually poured into the coil-quartz tube and then dried at 40 °C. This process was repeated ten times to achieve an even coating. The tube was subsequently calcined in a furnace at 600 °C for 3 hr, and then was cooled to room temperature in air.¹⁶

Apparatus and Procedure for HO₂⁻ Determination. The apparatus set-up for HO₂['] detection is shown in Figure 1. A carrier solution (S1, 1.0 mL/min), a pH-controlled buffer solution (S2, 0.2 mL/min), and a CL reagent solution (S3, 1.2 mL/min) including MCLA were delivered by using a peristaltic pump (PP, Ismatec Co.) with PTFE tubing (Cole-Palmer, i.d. 0.8 mm). The solution S1 was composed of airequilibrated water containing dissolved oxygen and was photocatalyzed using a coil-quartz tube (A) doped by TiO₂ particles, and equipped with a 4-W low pressure Hg lamp $(\lambda_{\text{max}} = 254 \text{ nm}; \text{Sankyo Denki Co., Japan})$. The HO₂ solution produced from the photolysis using the coil-quartz tube doped by TiO₂ particles was mixed with a pH-controlled buffer and then was passed through different lengths (0 m, 1 m, 2 m, 3 m, and 4 m, respectively) of a knotted tube reactor (KTR, B), which was able to control the concentration of HO2. Then, HO2 was detected using MCLA as a specific probe in the fabricated CL detector (D), which had a spiral reaction cell (C) that permitted reagents to mix directly in front of a Hamamatsu R-374 photomultiplier tube (PMT). The CL signal was transferred to a data acquisition system, Auto-chrowin (Younglin, Korea) consisting of a signal amplifier (E), an analog-to-digital converter (A/D, F), and a personal computer (G).

Results and Discussion

Reaction Scheme. The formation of HO_2^- in a TiO_2 photolysis is well-known. The basic mechanisms are as follows:¹⁷⁻²⁷

In-situ Calibration of the Hydroperoxyl Radical

$$\mathrm{TiO}_{2} + \mathrm{h}\upsilon \rightarrow \mathrm{h_{vb}}^{+} + \mathrm{e_{cb}}^{-} \tag{1}$$

$$H_2O (or OH^-) + h_{vb} \rightarrow OH^+ H^+$$
(2)

$$O_2 + e_{cb} \rightarrow O_2^{-} \tag{3}$$

$$O_2^{\cdot -} + H^+ \leftrightarrow HO_2^{\cdot} \tag{4}$$

In the aqueous phase, the photolysis of hydrated TiO₂ leads to the formation of a valence band hole (h_{vb}^+) and a conduction band electron (e_{cb}^-) in reaction 1. The hydroxyl radical ('OH) is produced from H₂O (or OH⁻) on the TiO₂ surface by trapping an h_{vb}^+ (reaction 2). Subsequently, the oxygen molecules adsorbed on the surface of air-saturated TiO₂ act as electron scavengers and combine with e_{cb}^- to form O₂⁻⁻ in reaction 3, which is in an acid-base equilibrium [reaction 4; pK_a (HO₂') = 4.80].¹⁴ In this study, HO₂'/O₂⁻⁻ reacts with the MCLA (reaction 8, *ref.* 25, 28-30) added after the end of the coil-quartz tube as shown in Figure 1.

$$MCLA + HO_{2}'/O_{2}' \rightarrow CL + product$$
(8)

Reaction Conditions. In order to determine the concentration of HO₂'/O₂⁻⁻, HO₂'/O₂⁻⁻ should be separated from reactive species such as 'OH and h_{vb}^+ . This is accomplished by immobilizing TiO₂ particles onto coil-quartz tube. During illumination, 'OH and h_{vb}^+ are present just within the coil-quartz tube due to their short life-times (in the picosecond to millisecond range),²²⁻²⁴ and thus they can hardly exist in the KTR. In contrast, the life-time of HO₂'/O₂⁻⁻ is relatively very long, and thus it remains present in the KTR. For example, its half-life ($t_{1/2}$) is approximately 44 seconds at pH 5-6 (*Ref.* 15) and is 2.8 h at pH 11 (*Ref.* 10). Since HO₂'/O₂⁻⁻ generated from the photolysis of immobilizing TiO₂ particles exists in the KTR, it is easily separated from reactive species such as 'OH and h_{vb}^+ .

Furthermore, since H_2O_2 is formed by disproportionation of HO_2'/O_2^- (self-reactions 1-3), this was reported to be potential interference.¹⁰ However, the following experimental results denied this possibility. As shown in Figure 2, the CL intensity is inversely proportional to an increasing length of KTR at pH 5.8 with pure water, indicating that the CL intensity decreases with an increasing reaction time. This

Figure 2. Dependence of the CL intensity on increasing the length of KTR: [MCLA] = 12 μ M, [DO] = 0.094 mM, λ = 254 nm, and pH = 5.8.

Figure 3. Dependence of the background CL intensity on increasing pH: [MCLA] = 12 μ M, [DO] = 0.094 mM, λ = 254 nm, and KTR = 0 m.

result is due to the k_{obs} values on the disproportionation reactions of HO₂'/O₂⁻⁻ and the pH dependences of the acidbase equilibrium between HO₂ and O₂⁻⁻, which was consistent with the kinetic data by Bielski *et al.*¹⁴ If H₂O₂ produces the CL, the CL intensity should not decrease with an increasing reaction time. Hence, the CL originates from the reaction of MCLA with HO₂'/O₂⁻⁻ generated through the immobilization of TiO₂ particles. Thus, photocatalytic produced HO₂'/O₂⁻⁻ can be used for calibration standards.

The working conditions for detection of HO_2'/O_2 by the CL method using MCLA have been previously described.¹⁰ However, because of the newly fabricated CL detector in this study, the enhanced CL detection system was optimized *via* small modifications. In addition, since the MCLA-based CL emission yields a high background signal at a high pH, it may result in errors as well as a poor detection limit. Thus, the optimum conditions for this detector were reinvestigated for background CL at an alkaline condition, high MCLA concentrations, and flow rate.

The dependence of background CL on various pH conditions was investigated for MCLA = 12 μ M, KTR = 0 m, and flow rate = 1.2 mL/min. In this experiment, the pH levels of the carrier solution were limited to a range of 5.6 (pure water only) to 11 with NaOH. As shown in Figure 3, the intensity of the background CL depends significantly on the pH of the carrier solution. The intensities of the background CL are almost invariable in lower pH ranges (pH < 9), whereas they gradually increase in the pH range of 9-10 and rapidly increase thereafter. The CL emission of MCLA has been generated from air oxidation of MCLA at a high pH, producing CL identical to that from HO2'/O2'-.10 Thus, carrier solutions were adjusted to below pH 9 to prevent a signal of background CL from a high pH. The dependence of the CL on MCLA concentration was investigated for pH = 8, KTR =0 m, and flow rate = 1.2 mL/min. In this experiment, the concentration range of MCLA producing the largest responses was from 8 μ M to 12 μ M (data not shown). In addition, the dependence of the CL on the flow rate was investigated for pH = 8, KTR = 0 m, and [MCLA] = 1.2 μ M. Our result showed that the proper flow rates of a carrier solution and an

788 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4

MCLA solution were respective 1.2 mL/min (data not shown). These results were observed to be similar to those of Zheng *et al.*¹⁰ Finally, all experimental conditions for the CL detection of the HO₂'/O₂⁻ were adjusted to below pH 9 by using a borate buffer and NaOH, [MCLA] = 1.2μ M, and flow rate = 1.2 mL/min.

Calibration for HO₂[•]. The basic principle of calibration employed in this work is described in detail in a previous study.¹⁵ In the absence of additives, HO_2'/O_2 ^{•-} is disproportionated by self-reactions 6-8:¹⁴

$$HO_2' + HO_2' \rightarrow H_2O_2 + O_2 \tag{6}$$

$$HO_2' + O_2' + H_2O \to H_2O_2 + O_2 + OH^-$$
 (7)

$$O_2^{-} + O_2^{-} + 2H_2O \rightarrow H_2O_2 + O_2 + 2OH^-$$
 (8)

where $k_6 = (8.3 \pm 0.7) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, $k_7 = (9.76 \pm 0.6) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, $k_8 < 0.3 \text{ M}^{-1} \text{ s}^{-1}$.¹⁴ If reaction 8 is ignored, the empirically observed pH-dependent rate constant, k_{obs} , at a given pH is

$$k_{\rm obs} = \{k_6 + k_7 (K_{\rm HO2}/[\rm H^+])\} / (1 + K_{\rm HO2}/[\rm H^+])^2$$
(I)

where $K_{\text{HO}_2} = 1.6 \times 10^{-5} \text{ M}^{-1}$ as recommended values.¹⁴ Reactions 1 and 2 are

$$-\frac{d[\text{HO}_{2}^{-}/\text{O}_{2}^{-}]}{dt} = k_{obs} [\text{HO}_{2}^{-}/\text{O}_{2}^{-}]^{2}$$
(II)

The solution of equation (II) is

$$k_{obs} \times t = \frac{[HO_{2}^{-}/O_{2}^{--}]_{o}}{[HO_{2}^{-}/O_{2}^{--}]_{o}} - \frac{[HO_{2}^{-}/O_{2}^{--}]_{t}}{[HO_{2}^{-}/O_{2}^{--}]_{t}}$$

$$\cong SR = \frac{A_{o} - A_{t}}{A_{o} A_{t}}$$
(III)

The signal ratio (SR) can be defined as $(A_o - A_t)/(A_o \times A_t)$ where A_o is the CL intensity for a KTR of 0 m, and A_t is the CL intensity for a KTR of 1 m, 2 m, 3 m, and 4 m, respectively. The CL intensity corresponding to the concentration of HO₂'/O₂⁻⁻ decreases with increasing lengths of a KTR. A plot of SR *vs.* KTR yields a straight line. From the slope and intercept of this line, we derive KTR_{t1/2} (= the length of the KTR at $t_{1/2}$) from the following equation (IV):

$$SR_{t_{1/2}} = Slope \times KTR_{t_{1/2}} \times Intercept$$
 (IV)

where $SR_{t_{1/2}}$ is identical with $1/A_o$ at $t_{1/2}$. From the KTR_{$t_{1/2}$} and the constant flow rate for KTR, we derive $t_{1/2}$. Since $[HO_2'/O_2^{--}]_{t_{1/2}}$ is equal to $[HO_2'/O_2^{--}]_o/2$ at $t_{1/2}$, equation (III) becomes

$$[\mathrm{HO}_{2}^{\prime}/\mathrm{O}_{2}^{-}]_{o} = \frac{1}{k_{obs} \times t_{1/2}} \tag{V}$$

Thus, a given concentration of HO₂'/O₂⁻⁻ can be readily calculated from the equation (V), based on the measured $t_{1/2}$ and the calculated k_{obs} at a given pH.

Figure 4 shows the SR of MCLA-based CL intensity in a CL detector as a function of KTR length at different pH values. In this experiment, the pH levels of a carrier solution were limited to a range of 5.6 (pure water only) to 9.0

Bum Gun Kwon

Figure 4. Linear plot of signal ratio (SR) versus knotted tubing reactor (KTR) with straight line: [MCLA] = 12 μ M, [DO] = 0.094 mM, λ = 254 nm, and pH = 5.80.

(borate buffer). The linear relationship between SR and KTR provides a slope and intercept to experimentally determine $t_{1/2}$ of HO₂'/O₂⁻⁻ at a given pH. The SR is proportional to the length of the KTR, which means that the intensity of an MCLA-based CL corresponding to the concentration of HO₂'/O₂⁻⁻ decreases with an increasing KTR length.

The values for $SR_{t_{1/2}}$, $D_{t_{1/2}}$, half-life ($t_{1/2}$), k_{obs} , and concentration of HO_2'/O_2' at given pH levels are listed in Table 1. The $t_{1/2}$ and concentration of HO₂'/O₂⁻⁻ increases as pH increases. These results were due to the k_{obs} values on the disproportionation reactions (reactions 6-8) and the pH dependences of the equilibrium between HO₂ and O₂. The pH dependence of HO2'/O2' concentration is distinguished from the different disproportionative reactivities between HO₂ and O₂. Based on pK_a (HO₂) = 4.8,¹⁴ the pH dependence of HO2'/O2' refers to the proper apportionment of HO2 and O2 depending on pH values. For example, the percentages of HO₂^{\cdot} and O₂^{\cdot -} at pH 5.8 are approximately 9% and 91%, respetively. At pH 9.0 their percentages are approximately 0.01% and 99.99%, respectively. At lower pH condition [HO₂']/[O₂'-] ratio is relatively high and HO₂' reacts relatively fast with O_2 · $(k_{obs} = 9.51 \times 10^6 \,\mathrm{M}^{-1} \mathrm{s}^{-1})$ at pH 5.8; see Table 1). On the other hand, as the pH increases,

Table 1. Summary of the results for the kinetic method in the determination of HO₂ on increasing of pH: [MCLA] = 12 μ M, [DO] = 0.094 mM, and λ = 254 nm.

pН	$\mathrm{SR}_{t_{1/2}}^{a}$	$\operatorname{KTR}_{t_{1/2}}^{b},^{b}$ m	<i>t</i> _{1/2} , seconds	$k_{ m obs},^c$ ${ m M}^{-1}{ m s}^{-1}$	Concentration of HO ₂ /O ₂ , M
9.00	11.90	5.33	207.20	6.00×10^3	$8.04 imes10^{-7}$
8.53	12.20	4.39	170.58	1.77×10^4	$3.31 imes 10^{-7}$
7.57	12.82	3.96	153.90	1.61×10^5	$4.02 imes 10^{-8}$
6.95	11.76	3.90	151.63	6.73×10^5	9.80×10^{-9}
6.50	10.53	2.97	115.56	$1.90 imes 10^6$	4.56×10^{-9}
5.8^{d}	9.09	2.24	87.00	$9.51 imes 10^6$	$1.21 imes 10^{-9}$

 a 1/A₀, where A₀ is the CL intensity at KTR of 0 m. b Eq (IV). c Eq (I). d Pure deionized water only.

 $[HO_2']/[O_2'']$ ratio rapidly decreases and the reaction 8 between O_2'' and O_2'' is dominant and relatively slow ($k_{obs} = 6.00 \times 10^3 \text{ M}^{-1}\text{s}^{-1}$ at pH 9.0; see Table 1). Hence, the concentration of HO_2'/O_2'' in a basic condition is much more than its concentration in an acidic condition. Therefore, the concentration of HO_2'/O_2'' is increased as pH increases. These results are consistent with the kinetic data by Bielski *et al.*¹⁴

Comparison of Calibration Techniques. Because of a new viewpoint on the calibration standard of HO₂'/O₂⁻⁻ generated by the UV photolysis of immobilized TiO₂, it is critical to evaluate whether the present method is reliable or not. Under the same experimental condition using a constant flow rate of pure deionized water, the initial concentrations of HO₂'/O₂⁻⁻ were analyzed simultaneously by the present MCLA-CL method and the previous Fenton-like method.¹⁵ The initial concentration $(1.21 \pm 0.15 \times 10^{-9} \text{ M})$ of HO₂'/O₂⁻⁻ determined by the MCLA-CL method was much more with 17% than its concentration $(1.01 \pm 0.53 \times 10^{-9} \text{ M})$ determined by the Fenton-like method. This comparison showing considerable agreement clearly indicates the utility of the MCLA-CL method for measurement of HO₂'/O₂⁻⁻ as a standard.

Conclusion

We have investigated an in-situ calibration method for the measurement of HO₂'/O₂⁻⁻ using a wet technique. This method was based on the immobilized TiO₂ photocatalyst and MCLA-based CL technique. HO₂'/O₂⁻⁻ is generated by the UV photolysis of immobilized TiO₂ using a constant flow rate of air equilibrated water. The concentration of HO₂'/O₂⁻⁻ is readily determined from on the half-life of HO₂ and its empirically observed pH-dependent rate constant (k_{obs}) at a given pH. The concentration of HO₂'/O₂⁻⁻ is increased as pH increases. This pH dependence is due to the different disproportionative reactivities between HO₂ and O₂⁻⁻. The concentrations of HO₂'/O₂⁻⁻ are in the range of 1.21 nM (pH 5.80) to 804 nM (pH 9.00).

Acknowledgements. This subject is supported by Korea Ministry of Environment as "The Eco-technopia 21 project."

References

 Cantrell, C. A.; Stedman, D. H. Geophys. Res. Lett. 1982, 9, 846-849.

- Hastie, D. R.; Weissenmayer, M.; Burrows, J. P.; Harris, G. W. Anal. Chem. 1991, 63, 2048-2057.
- Lightfoot, R. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. *Atmospheric Environment*. **1992**, 26A, 1805-1961.
- 4. Faust, B. C.; Allen, J. M. J. Geophys. Res. 1992, 97, 12913-12926.
- Stevens, P. S.; Mather, J. H.; Brune, W. H. J. Geophys. Res. 1994, 99, 3543-3557.
- Hu, J.; Stedman, D. H. Environ. Sci. Technol. 1995, 29, 1655-1659.
- Cantrell, C. A.; Shetter, R. E.; Calvert, J. G. Anal. Chem. 1996, 68, 4194-4199.
- Kirchner, F.; Stockwell, W. R. J. Geophys. Res. 1996, 101, 21007-21022.
- Sillman, S.; He, D.; Pippin, M. R.; Daum, P. H.; Imre, D. G; Kleinman, L. I.; Lee, J. H.; Weinstein-Lloyd, J. J. Geophys. Res. 1998, 103, 22629-22644.
- Zheng, J.; Springston, S. R.; Weinstein-Lloyd, J. Anal. Chem. 2003, 75, 4696-4700.
- 11. Heard, D. E.; Pilling, M. J. Chem. Rev. 2003, 103, 5163-5198.
- Hard, T. M.; O'Brien, R. J.; Chan, C. Y.; Mehrabzadeh, A. A. Environ. Sci. Technol. 1984, 18, 768-777.
- National Aeronautics and Space Administration (NASA). Assessment of techniques for measuring tropospheric H_xO_y. (Conference Publication 2332); Hoell, J. M., Ed.; Proceeding of a workshop held in Palo Alto; California August 16-20; 1984.
- Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14.
- 15. Kwon, B. G.; Lee, J. H. Anal. Chem. 2004, 76, 6359-6364.
- Zhu, Y.; Zhang, L.; Gao, C.; Cao, L. J. Mater. Sci. 2000, 35, 4049-4054.
- Courbon, H.; Formenti, M.; Pichat, P. J. Phys. Chem. 1977, 81, 550-554.
- 18. Howe, R. F.; Grätzel, M. J. Phys. Chem. 1987, 91, 3906-3909.
- 19. Gerisher, H.; Heller, A. J. Phys. Chem. 1991, 95, 5261-5267.
- Wang, C.-M.; Heller, A.; Gerischer, H. J. Am. Chem. Soc. 1992, 114, 5230-5234.
- 21. Upadhya, S.; Ollis, D. F. J. Phys. Chem. B 1997, 101, 2625-2631.
- Mills, A.; Hunte, S. L. Journal of Photochemistry and Photobiology A: Chemistry. 1997, 108, 1-35.
- Linsebigler, A. L.; Lu, G; Yates, J. T. Jr. Chem. Rev. 1995, 95, 735-758.
- Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96.
- Nosaka, Y.; Yamashita, Y.; Fukuyama, H. J. Phys. Chem. B 1997, 101, 5822-5827.
- Hirakawa, T.; Kominami, H.; Ohtani, B.; Nosaka, Y. J. Phys. Chem. B 2001, 105, 6993-6999.
- 27. Hirakawa, T.; Nosaka, Y. Langmuir 2002, 18, 3247-3254.
- Nakano, M.; Sugioka, K.; Ushijima, Y.; Goto, T. Anal. Biochem. 1986, 159, 363-369.
- Shimomura, O.; Wu, C.; Murai, A.; Nakamura, H. Anal. Biochem. 1998, 258, 230-235.
- 30. Teranishi, K.; Shimomura, O. Anal. Biochem. 1997, 249, 37-43.