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An analytical solution for the Schrodinger equation with written as follow$
time-dependent potential has been investigated extensively iEt
over past decades. In addition to its own mathematical Wix,t) = e n@(é& t)x(xt), 3)

inter his problem has wide applications in many areas of . .
terest, this problem has wide app y hereE is a constant parameter which could be the energy

physics, such as laser-induced dynamics, the motion of Pal . . .
trap ionst and semiconductor physie©nly systems with Of the system. Insertingx, {) of eq. (3) ino time-dependent
ﬁghrodlnger equation and changiqi &, we have

time-dependent potentials that are constant, linear, and quadra
in x are known to be analytically solvéd. dzqo + 909X Fx v

For these problems, the well known methods for analytical [ g8~ 0&ox T J V(D ex
wave functions are the famous invariant operator apprbach,
the propagator methgdand the time-space transformation [XB)(M‘( d(% gaD X+ dXB} 4)
method® In general, systems with potentials \gfx, t) = s a o
f(t)x® + g(t)x+h(t) has been solved exactly by these Since the potentia¥/(é) in eq. (4) does not depend bn
method$. Among these systems, rectangular potentials withexplicitly, ¢(&, t) would be a time-independent solution if the
time-dependent height or depth are quite simple to $dive. following relation is satisfied:
rectangular barrier with time-dependent position is, howevet, F
much more complex and the Schrodinger equation has not  — h [2d¢dx+ 1) )2(} [ d£d¢+ Q X} (5)
yet been solved analytically, although Moiseystudied the 2m_08ox " ox Xaoe™ P
problem approximately by averaging the potential in timegq. (4) then becomes
and by treating it as a time-independent bound system. h dz I0(E. 1)

In the present work, we obtain the exact solution for the D om +V(&) - ED(Kf t) = ih dt, . (6)
rectangular barrier whose position is oscillating in time. We
use the Kramers-Henneberger transformatiovhich is a  Solutions of eq. (6) would be™® |, wheme=ik or x
particular form of time-space transformation technique. (k=2mE/ 1), (k= ./2m(V,—E)/h), depending on the

The Hamiltonian for the rectangular barrier with oscillating region ofx.

position is chosen &s Substituting d&/ dt=—(p(t)/m) andy(&)=e** into eq.
o’ (5) and then rearranging it, we have
H(x, t) = +V(x 1), 1
008 = o TV W n I Moo,
where 2mgx®  m X a
To determine the solution, we factorixéx, t) as x(x, t)
D\/o, if [X+ 0oCOS G| < = u(t)u(x) since the eq. (7) is not coupledkiandt. Inserting
V(x t) = (2)  x(x 1) into eq. (7) and then dividing both sidesugt)u(x),
%b, elsewhere we obtain,
The position of the barrier oscillates with the frequency h 1d° hcll?ju = Eﬁdu Clp(t)% (8)
w= 21T so that at = 0 the barrier is centered xat —aq, 2Mugy  mudx dt m

and att = T/2 its center is at = +ao. The Hamiltonian with  Since the left-hand side is a function>obnly, while the
the potentiaV(x, t) of eq. (2) is obtained fromd = p%/2m + right-hand side is a function fwe let both sides equaldp
V(x) + Eoxcosut by Kramers-Henneberger transformatibn, which is a constant. Thus we hax# as given below,
where ao=Eo/ma?. This Hamiltonian represents the system

under the fieldExcosd. _ ot PO  jet—cuaycosat 9
If we introduce a new variable§(x, t) =X+ accosu, u(t) = e =€ ’ )
following the Kramers-Henneberger transformafibrihe The left-hand side would be an ordinary second-order

time-dependent wave function of the systé¥, t), can be  differential equation fou(x) as,
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Fromu(x) = €'®, we get

u(x) = cosr%—J;_Ax X A<O

co%/zzx <X A>0. (16)

Thus we haveg(x, t) as

icot— INEAN
eICzt aDC]COWCOSI"E— 5 X%_C'X,

h d°v _hcdu _
2md><2+ m dx—czu = 0. (10)

Insertingu(x) = €'® into eq. (10), we obtain the equation
for A(X) given as,

&, A, hadd . _
Zm[dx2 EtjxD}+ mdx %= 0 (11)

If we definedA/dx=w(x) and insert it into eq. (11), we

finally have the first-order differential equation f@(x) as
given below,

2h ‘;"" = cz—hclw—zh W, (12)
max m m Insertingx(x, t) from eq. (17) and(é, t) which ise*** into

which can be easily solved by integrating the equation giveeq. (3), we can exactly determitgx, t) for the system of

XX, 1)

_ iCt—aoc, coswt D\/—_A —C.X
=e cosfOE, 4>0. (A7)

as, rectangular barrier with the oscillating position.
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Integrating eg. (13), we would have

.- 5 o th 2(c, + W) Ao References
A J-a O 1. Paul, WRev. Mod. Phy$.99Q 62, 531.
+ 2. Roy, D. K.Quantum Mechanical Tunneling And Its Application
2 tarr* E—Z(Cl W)E, A>0, (14) World Scientific: Singapore, 1986.
«/B JB 3. Truscott, W. SPhys. Rev. Letl993 70, 1900.
4. Lewis, Jr., H. RJ. Math. Phys1968 9, 1976.
where A=—4(2m/h ¢ + Ci) . Determiningv(x) from eq. 5. Yeon, K. H.; Kim, D. H.; Um, C. I.; George, T. F.; Pandey, L. N.
(14) and integrating it again, we haMg) as given below, Phys. Rev. A997, 55, 4023.
6. Feng, MPhys. Rev. 2001, 64, 034101-1.
7. Truax, D. RJ. Math. Phys1982 23, 43.
8. Wagner, M.Phys. Rev. B994 49, 16544; Wagner, MPhys. Rev.

A(X —In[cos ch A<O
() h% 1 Lett. 1996 76, 4010.

9. Vorobeichik, I.; Lefebvre, R.; Moiseyev, Burophys. Lett1998

= In [cost D} X, A>0. (15) 41,111,
U2 "0 10. Henneberger, W. ®hys. Rev. Letl96§ 21, 838.




