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An analytical solution for the Schrödinger equation with
time-dependent potential has been investigated extensively
over past decades. In addition to its own mathematical
interest, this problem has wide applications in many areas of
physics, such as laser-induced dynamics, the motion of Paul
trap ions,1 and semiconductor physics.2 Only systems with
time-dependent potentials that are constant, linear, and quadratic
in x are known to be analytically solved.3

For these problems, the well known methods for analytical
wave functions are the famous invariant operator approach,4

the propagator method,5 and the time-space transformation
method.6 In general, systems with potentials of V(x, t) =
f(t)x2 + g(t)x + h(t) has been solved exactly by these
methods7. Among these systems, rectangular potentials with
time-dependent height or depth are quite simple to solve.8 A
rectangular barrier with time-dependent position is, however,
much more complex and the Schrödinger equation has not
yet been solved analytically, although Moiseyev9 studied the
problem approximately by averaging the potential in time
and by treating it as a time-independent bound system.

In the present work, we obtain the exact solution for the
rectangular barrier whose position is oscillating in time. We
use the Kramers-Henneberger transformation10 which is a
particular form of time-space transformation technique. 

The Hamiltonian for the rectangular barrier with oscillating
position is chosen as9

, (1)

where 

= (2)

The position of the barrier oscillates with the frequency
ω = 2π/T so that at t = 0 the barrier is centered at x = −α0,
and at t = T/2 its center is at x = +α0. The Hamiltonian with
the potential V(x, t) of eq. (2) is obtained from H = p2/2m+
V(x) + E0xcosωt by Kramers-Henneberger transformation,10

where α0=E0/mω2. This Hamiltonian represents the system
under the field E0xcosωt.

If we introduce a new variable, ξ(x, t) = x + α0cosωt,
following the Kramers-Henneberger transformation,10 the
time-dependent wave function of the system, Ψ(x, t), can be

written as follows3

,  (3)

where E is a constant parameter which could be the energy
of the system. Inserting Ψ(x, t) of eq. (3) into time-dependent
Schrodinger equation and changing x to ξ, we have 

. (4)

Since the potential V(ξ) in eq. (4) does not depend on t
explicitly, φ(ξ, t) would be a time-independent solution if the
following relation is satisfied:

. (5)

Eq. (4) then becomes

. (6)

Solutions of eq. (6) would be , where c1 = ik or χ
, depending on the

region of x.
Substituting  and  into eq.

(5) and then rearranging it, we have

. (7)

To determine the solution, we factorize χ(x, t) as χ(x, t)
= u(t)υ(x) since the eq. (7) is not coupled in x and t. Inserting
χ(x, t) into eq. (7) and then dividing both sides by u(t)υ(x),
we obtain,

. (8)

Since the left-hand side is a function of x only, while the
right-hand side is a function of t, we let both sides equal to c2

which is a constant. Thus we have u(t) as given below,

. (9)

The left-hand side would be an ordinary second-order
differential equation for υ(x) as,
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. (10)

Inserting υ(x) = eλ(x) into eq. (10), we obtain the equation
for λ(x) given as,

. (11)

If we define dλ/dx= w(x) and insert it into eq. (11), we
finally have the first-order differential equation for w(x) as
given below,

, (12)

which can be easily solved by integrating the equation given
as,

. (13)

Integrating eq. (13), we would have

  ,

  ,   , (14)

where . Determining w(x) from eq.
(14) and integrating it again, we have λ(x) as given below,

,  

  ,   . (15)

From υ(x) = eλ(x), we get 

,

  ,    . (16)

Thus we have χ(x, t) as

,

 , . (17)

Inserting χ(x, t) from eq. (17) and φ(ξ, t) which is  into
eq. (3), we can exactly determine Ψ(x, t) for the system of
rectangular barrier with the oscillating position. 
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