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Table 1. Electroreductive coupling of aromatic dihalides

Solvent Nal
(eq)

Rxtime 
(h)

Electricity 
(F/mol)

Yield(2+3) 
(%)

Ratio 
(2:3)

1 THF 0.0 4 4.9 24.0 1:0.6
2 THF 0.0 10 9.3 21.0 1:1.3
3 THF 0.1 4 7.3 21.0 1:1.6
4 Diglyme 0.0 2 6.9 86.0 1:4.7
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Because of its diverse application in industry and compati-
bility in green chemistry1, the electro organic synthesis (E.O.S.)2 
is expected to provide the important organic synthetic tools in 
a near future. The brief review about the E.O.S. was introduced 
by us.3 Our continuing efforts to develop the E.O.S. utilizing 
alternated Mg electrodes, the synthetic routes from the nitro 
aromatic compounds to the azo compounds3a and the reductive 
coupling of aromatic mono halides3b were reported by our labo- 
ratory. 

For further expansion of the our E.O.S. reaction, the benzal 
bromide 1 was exposed to our optimized aromatic mono hal-
ide coupling reaction.3b The important reaction conditions 
were the following : Mg metal for both of anode and cathode 
and LiClO4 as an electrolyte at the room temperature under a 
constant current4 (current density = 42 mA/cm2). The current 
of anode and cathode were altered at an interval of 30 second 
in order to minimize the consumption of metal. The two major 
spots were separated from the reaction residue in a low yield. 
They were characterized by TLC and by spectroscopic meth-
ods with the authentic samples. (Eq. 1) 

To our surprise, it gave rise to not only the desired trans-stil-
bene 2 but also the unexpected bibenzyl 36 under the various 
reaction conditions. (Table 1) The cis-stilbene 8 was not 
detected. The amount of the bibenzyl 3 was increased by the 
amount of electricity but the overall yields were still low. 
After applying various reaction condition, the low yield was 
drastically improved to 86% by changing the solvent from 
THF to diglyme. It could be explained that diglyme carried 
the better electric conductivity than THF. (diglyme: 3.45 F/h 
and THF : 0.9-1.8 F/h from Table 1) The formation of the 
trans-stilbene 2 was explained by the reductive coupling re-
action of aromatic mono halide we reported.3b However, the 
isolation of the unexpected bibenzyl 3 raised a challenging 
question about the course of the reaction. 

With the interesting result in our hand, our attention was fo-
cused on the formation of the bibenzyl 3 under our E.O.S. re-
action conditions. At first, we assumed that the unexpected bi-
benzyl was originated from the trans-stilbene since the ratio 
of them was varied by the reaction condition. Based on our as-

sumption, the reactivity of the trans-stilbene 2 under the 
E.O.S. condition was carefully investigated. (Eq. 2)

The trans-stilbene gave rise to the bibenzyl 3 and the 
2-(1,2-diphenylethyl) tetrahydrofuran 4,7 respectively. Mean- 
while, the cis-stilbene 8 gave rise to the same result under our 
reaction condition. (Eq. 3) 

The isolation of the compound 4 provided the crucial 
clue for the source of the hydrogen in our reaction. According 
to on our previous experience and intensive literature search 
for mechanism of electro reductive organic reaction, our new 
hydrogenation route can be rationalized by the following re-
action mechanism (Scheme 1). When the biradical 5 abstracted 
the ɑ-hydrogen from THF successively, the bibenzyl 3 was 
obtained. And then the coupling reaction between the result-
ing THF radical 6 and the monoradical 7 produced the THF at-
tached compound 4. Participation of the THF radical under 
photolysis of ionic and radical pathways in bibenzyl de-
rivatives was reported. It was noteworthy that the diglyme 
produce the bibenzyl 3 as a sole product. (Table 2) In case 
of the diglyme as the solvent, it was assumed that the reactive 
diglyme radical equivalent to 6 did not exit long enough in the 
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Table 2.  Electroreduction of trans-Stilbene 

Solvent Rxtime (h) Electrolyte (eq) Electricity (F/mol) Voltage (V) Yield(3+4) (%) Ratio (3:4)

1 THF 2 13.2 8.97 50 94 70:24
2 THF 2 20.4 17.3 50 98 55:43
3 THF 4 13.2 17.8 25 89 78:11
4 Diglyme 2 11.3 8.99 50 79 79:0

Mg 
electrode e-

THF LiClO4

O

+

9 3 4 (5)

Table 3. Electroreduction of diphenyl acetylene

Rxtime
(h)

Temperature 
(℃)

Voltage
(V)

Yield(3+4) 
(%)

Ratio
(3:4)

1 4 r.t 50 80 60:20
2 4 0℃ 50 70 47:23
3 8 r.t 25 72 67:5

(79%)

Mg electrode

LiClO4
alt 30s
diglyme2 3

(4)

reaction medium to couple with the radical 7. However, the 
significant different reactivity between of THF and diglyme is 
still under investigation. 

In order to validate our observation, the diphenyl acetyl-
ene 9 were submitted under the our optimized E.O.S condition. 
It required more reaction time and the same tendency in re-
activity (Eq. 5).

The trans-stilbene 2 was not isolated under our reaction 
condition. (Table 3) It suggested that the hydrogenation of the di-
phenyl acetylene 9 to the trans-stilbene 2 was significantly slow-
er than hydrogenation of the trans-stilbene 2 to the bibenzyl 3. 

In conclusion, the hydrogenation reaction condition for the 
trans-stilbene utilizing Mg electrodes was established. (Eq. 4) 

We named it as the E.O.S. hydrogenation of the stilbene. 
It was worthwhile to mention that our procedure require 
neither any exotic metal catalyst-for example: Ru(PPh3)4H2, 
NaBH4,8 Pd(OAc)2, P(t-Bu)3

9- nor hydrogen gas10 compare 
to the conventional catalytic hydrogenation. The further 
elucidation of its reaction mechanism and general application 
to others carbon skeletons will be discussed in detail. 
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