Benzofurans from the Seeds of *Styrax obassia*

Sin Young Park, Hak-Ju Lee, Oh-Kyu Lee, Ha-Young Kang, Don-Ha Choi, Ki-Hyon Paik,[†] and M. Khan^{*}

Division of Wood Chemistry & Microbiology, Korea Forest Research Institute, Seoul 130-712, Korea *E-mail: mdk_cimap@yahoo.com *Department of Forest Resources and Environmental Science, Korea University, Seoul 136-701, Korea

Received January 25, 2007

Key Words : *Styrax obassia*, Styracaceae, Egonol, 5-(3"-Propanoyloxypropyl)-7-methoxy-2-(3',4'-methylenedioxyphenyl)-benzofuran

Styrax obassia also known as 'fragrant snowbell' is a member of the Styracaceae family. It is a shrub or tree native to tropical and subtropical regions with the majority in eastern and southern Asia.^{1,2} The genus Styrax is different from other genera of this family due to the production of resinous material, usually secreted when the barks and trunks are injured by sharp objects.¹ This resin, in the past considered as a miraculous remedy in several parts of Asia and America, has been used in traditional medicine to treat inflammatory diseases.³ Its resin was used by Romans. Egyptians, Phoenicians and Ionians as incense and in therapeutics.⁴ The pericarps are used as washing soap (skin elastic material), cough medicine and a piscicidal agent.⁵ Styrax species contain egonol, a natural benzofuran, which is known to be an effective pyrethrum synergist.^{6,7} Earlier chemical studies on several Styrax species have revealed them to be a rich source of arylpropanoids, triterpenoids and their glycosides⁶⁻¹² with various biological activities such as antisweet,⁵ antimicrobial,⁷ antiproliferative,¹¹ cytotoxic¹² and matrix metalloproteinase-1-inhibitor.¹³ However, careful literature survey of Styrax species revealed that Styrax obassia has not been studied much so far except for a few short reports.^{6,8} As a part of our on going research on chemical constituents from S. obassia, we isolated a hitherto unknown compound 1 along with four known compounds (2-5) from the seeds of S. obassia. This paper deals with the isolation and structure elucidation of these compounds by their comprehensive spectroscopic analysis including 2D NMR. The ¹³C NMR data of known compound 5 is being reported here for the first time.

Compound 1 (Figure 2) was obtained as a colorless crystal and exhibited UV absorbance in CHCl₃ at 242 and 318 nm. The IR spectrum of compound 1 showed the bands at 2954,

Figure 1. Key HMBC correlations of compound 1.

1738, 1601, 1481, 1232 and 941 cm⁻¹. Compound 1 showed a molecular ion peak at m/z 382 ([M]⁺, base ion) in the EIMS spectrum, its molecular formula could be determined as $C_{22}H_{22}O_6$ by HREIMS *m/z*: 382.1416 ([M]⁺, calcd. for C₂₂H₂₂O₆, 382.4141). ¹H and ¹³C NMR signals of compound 1 (Figure 1) were assigned by the interpretation of the DEPT, COSY, HMQC and HMBC spectra (Table 1). The ¹³C NMR spectrum of compound 1 showed the signals for 22 carbons which were distinguished into two methyl ($\delta_{\rm C}$ 9.2, 56.1), five methylene ($\delta_{\rm C}$ 27.6, 30.7, 32.4, 63.6, 101.2), six methine ($\delta_{\rm C}$ 100.3, 105.5, 107.4, 108.5, 112.3, 119.2) and nine quaternary ($\delta_{\rm C}$ 124.6, 131.0, 136.9, 142.5, 144.7, 147.9, 148.0, 156.1, 174.5) carbons with the help of DEPT experiments. Upon integration ¹H NMR spectrum of compound 1 showed the presence of 22 protons. Most of the ¹H and ¹³C NMR signals of compound 1 were similar to those of egonol⁶ which is also isolated in this work, besides the extra ¹H NMR signals at δ 1.15 (3H, J = 7.5 Hz) and 2.34 (2H, q) and their corresponding ¹³C NMR signals at $\delta_{\rm C}$ 9.2 (methyl carbon), $\delta_{\rm C}$ 27.6 (methylene carbon) and $\delta_{\rm C}$ 174.5 (quaternary carbon) from ¹H-¹³C one bond (HMQC) experiment for a propanoyl moiety. The position of propanoyl moiety was confirmed from the HMBC experiment. The proton H-3" of egonol moiety correlated with the carbon 1a of propanoyl group in the HMBC experiment, which confirmed the position of a propanoyl moiety in compound 1 (Figure 1). On the basis of these spectroscopic data compound 1 was

Figure 2. Chemical structures of the isolated compounds from the seeds of *S. obassia*.

C/H	DEPT	$\delta_{ m C}$	$\delta_{ ext{H}}$	$J(\mathrm{Hz})$	COSY	HMBC (H \rightarrow C)
2	С	156.1	_	_	-	_
3	CH	100.3	6.78, s	-	-	C-2/C-8/C-9
4	CH	112.3	6.95, s	-	—	C-3/C-6/C-8
5	С	136.9	—	_	—	_
6	CH	107.4	6.60, s	—	—	C-7/C-8
7	С	144.7	-	-	-	_
8	С	142.5	-	-	-	_
9	С	131.0	-	-	-	_
1'	С	124.6	-	-	-	_
2'	CH	105.5	7.31, <i>d</i>	1.5	-	C-2/C-3'/C-4'
3'	С	148.0	_	_	-	_
4'	С	147.9	-	_	-	_
5'	CH	108.5	6.87, d	8.5	H-6'	C-1'/C-3'/C-4'
6'	CH	119.2	7.40, <i>dd</i>	1.5, 8.5	H-5'	C-2/C-4'
OCH_2O	CH_2	101.2	6.00, <i>s</i>	-	-	C-3'/C-4'
1"	CH_2	32.4	2.74, <i>t</i>	7.5	H-2"	C-4/C-5/C-6/C-2"/C-3"
2"	CH_2	30.7	2.00, <i>m</i>	-	H-1", H-3"	C-5/C-1"/C-3"
3"	CH_2	63.6	4.13, <i>t</i>	6.5	H-2"	C-1"/C-1a
OMe	CH_3	56.1	4.03, <i>s</i>	-	-	C-7
1a	С	174.5	-	-	-	_
2a	CH_2	27.6	2.34, q	7.5	H-3a	C-1a/C-3a
3a	CH_3	9.2	1.15, <i>t</i>	7.5	H-2a	C-1a/C-2a

^{a1}H and ¹³C NMR recorded at 500 and 125 MHz, respectively.

Table 1. 1D^a and 2D NMR data in CDCl₃ for compound 1

elucidated as egonol propanoate.

Known compounds (2-5) (Figure 2) were identified by comparison of their spectral data with literature values as follow: $egonol^{6,8,9}$ (2), $egonolacetate^{6,8,9}$ (3), egonol-2-methylbutanoate^{6,8,9} (4) and 7-demethoxyegonol-2-methylbutanoate^{6,8} (5).

Experimental Section

General Methods. Melting points were determined on an Electrothermal IA-9200 melting point apparatus (Electrothermal Engg. Ltd. U.K.) and are uncorrected. Optical rotations were taken on a Jasco P1020 polarimeter. UV spectra were recorded on a Hewlett Packard 8452A Diode Array Spectrophotometer. IR spectra were recorded in KBr with a NEXUS FT-IR spectrophotometer. EIMS and HREIMS were obtained with a JEOL JMS-SX102A spectrophotometer. ¹H NMR (500 MHz), ¹³C NMR (125 MHz), DEPT, COSY, HMQC, and HMBC spectra were obtained with a Varian Unity-Inova 500 spectrophotometer. The NMR samples were prepared in CDCl₃/DMSO with tetramethylsilane (TMS) as an internal standard. The chemical shifts and coupling constants (J) were expressed in δ and Hz, respectively. Thin layer chromatography (TLC) was carried out on pre-coated Silica gel 60 F₂₅₄ (0.2 mm, Merck, Germany) plates. Preparative thin layer chromatography was carried out on pre-coated Silica gel 60 F_{254} (20 × 20 cm², 2.0 mm, Merck, Germany) plates. TLC plates were developed with solvent system A (toluene/ethyl formate/ formic acid = 20:2:1, v/v/v) and B (*n*-hexane/ethyl acetate/ toluene = 8:1:1, v/v/v). Developed TLC plates were visualized under UV light at 254 and 365 nm. Silica gel 60 (40-100 μ m, Kanto Chemical Co. Japan) was used for the column chromatography. An ADVENTEC SF-1600 was used as the automated fraction collector in the column chromatography.

Plant Material. The fruits of *S. obassia* were collected from Jiri mountain (Hadong-kun) in Kyungnam, Korea in September, 2004 and identified by Dr. Y. H. Kwon (Korea National Arboretum, Pocheon, Korea). A voucher specimen has deposited at the Korea Forest Research Institute, Seoul, Korea.

Extraction and Isolation. 8.0 Kg of air-dried and powdered seeds of *S. obassia* were extracted three times with MeOH at room temperature for 72 hrs each. The combined MeOH extracts were concentrated under vacuum at 40 °C until MeOH was completely removed. The concentrated MeOH extract was dissolved in distilled water and successively partitioned with *n*-hexane, dichloromethane and ethyl acetate.

Column chromatography of an oily mass from *n*-hexane soluble fraction on silica column gave 93 fractions (250 mL each) in benzene:ethyl acetate (20:1, v/v). On the basis of TLC profiles, these fractions are divided into four groups. Group one (46.6 g) was chromatographed on silica gel column using *n*-hexane:ethyl acetate (17:1, v/v) as an eluent to collect nine fractions (100 mL each), and then column was washed with MeOH to give an oily mass (43.7 g). Fraction 2 formed some precipitate which was washed with MeOH to give a pure compound **3** (3.7 g). At the same time, fraction 7 was purified by preparative TLC in *n*-hexane:

ethyl acetate (5:1, v/v) to give a pure compound 4 (40 mg). The oily mass (43.7 g) upon silica gel column chromatography in *n*-hexane:ethyl acetate (15:1, v/v) gave 85 fractions (250 mL each). TLC profiles of these fractions led them to divide into four groups. Group one (10.0 g) was chromatographed on silica column in *n*-hexane:chloroform: ethyl acetate (23:1:1, v/v/v) to give three fractions. Rechromatography of fraction 2 (3.5 g) on silica column in chloroform:toluene:ethyl acetate (17:1:1, v/v/v) gave pure compound 5 (88.8 mg). On the other hand, group four (1.36 g) was chromatographed on silica gel column using nhexane:benzene:ethyl acetate (8:1:1, v/v/v) as an eluent to yield 80 fractions (4.0 g each by a fraction collector). On the basis of TLC profiles these fractions are divided into three parts. Part two (255 mg) was finally chromatographed using chloroform:toluene:ethyl acetate (8:1:1, v/v/v) as an eluent on silica to give a pure compound 1 (42.7 mg).

The ethyl acetate solubles (122.7 g) from MeOH extract was chromatographed on silica column with increasing polarity of *n*-hexane:ethyl acetate:acetone (9:2:1 \rightarrow 5:2:1 \rightarrow 3:2:1 \rightarrow 1:2:2, v/v/v) to collect five fractions. Fraction 3 was concentrated to produce a powdery mass which was washed with toluene, benzene and finally with ethyl acetate. The ethyl acetate soluble part produced pure compound **2** (1.08 g).

5-(3''-Propanoyloxypropyl)-7-methoxy-2-(3',4'-methylenedioxyphenyl)-benzofuran (1): Colourless crystal. m.p. 86-87 °C. $[\alpha]_D^{20.4}$ +4.7° (c = 0.22, CHCl₃). UV (CHCl₃) λ_{max} nm (log ε): 242 (3.9), 318 (4.3). IR (KBr) ν_{max} : 2954, 1738, 1601, 1481, 1371, 1232, 1190, 1038, 941 and 812 cm⁻¹. EIMS *m/z*: 382 ([M]⁺, base ion), 308, 282, 267 and 251. HREIMS *m/z*: 382.1416 ([M]⁺, calcd. for C₂₂H₂₂O₆, 382.4141). ¹H NMR (CDCl₃, 500 MHz), ¹³C NMR (CDCl₃, 125 MHz), COSY and HMBC see Table 1.

Egonol (2): White powder. m.p. 112-113 °C (lit.⁸ 113-115 °C). EIMS m/z: 326 ([M]⁺). UV, IR, ¹H and ¹³C NMR data are in agreement with litrature.^{6,8,9}

Egonolacetate (3): Yellowish powder. m.p. 104-105 °C (lit.⁸ 103-105 °C). EIMS m/z: 368 ([M]⁺). UV, IR, ¹H and ¹³C NMR data are in agreement with litrature.^{68,9}

Egonol-2-methylbutanoate (4): Pale yellow oil. EIMS

m/z: 410 ([M]⁺). UV, IR, ¹H and ¹³C NMR data are in agreement with litrature.^{6,8,9}

7-Demethoxyegonol-2-methylbutanoate (5): Colourless needles. m.p. 54-55 °C (lit.⁶ 55.5-56 °C). EIMS m/z: 380 ([M]⁺). UV, IR, ¹H NMR data are in agreement with litrature.^{6,8 13}C NMR (125 MHz, CDCl₃): δ 11.6q (C-4a), 16.6q (C-5a), 26.8t (C-3a), 30.9t (C-2"), 32.1t (C-1"), 41.1d (C-2a), 63.4t (C-3"), 100.0d (C-3), 101.3t (-O-CH₂-O-), 105.4d (C-2'), 108.6d (C-5'), 110.7d (C-7), 119.1d (C-6'), 120.0d (C-4), 124.5d (C-6), 124.8s (C-1'), 129.5s (C-9), 135.9s (C-5), 148.0s (C-4'), 148.1s (C-3'), 153.4s (C-8), 156.0s (C-2), 176.8s, (C-1a).

Acknowledgement. The authors thank the Korea Basic Science Institute in Seoul for performing the NMR experiments.

References

- Pio, C. M. Dicionorio de Plantas Medicinais Uteis do Brasile das Exoticas Cultivadas, Ministerio da Agricultura: Rio de Janeiro, Brazil, 1931; vol. II, p 363.
- 2. Lee, T. B. *Illustrated Flora of Korea;* Hwang Mun Sa: Seoul, Korea, 1982; p 613.
- Costa, A. F. Farmacognosia, 2nd ed.; Fundacao Calouste Gulbenkian: Lisboa, 1968; vol. 1, p 737.
- 4. Vardar, V.; Oflas, S. S. Qual. Plant. Mater. Veg. 1973, 22, 145-148.
- Yoshikawa, K.; Hirai, H.; Tanaka, M.; Arihara, S. Chem. Pharm. Bull. 2000, 48, 1093-1096.
- Takanashi, M.; Takizawa, Y. Phytochemistry 1988, 27, 1224-1226.
- Pauletti, P. M.; Araujo, A. R.; Young, M. C. M.; Giesbrecht, A. M.; Bolzani, V. S. *Phytochemistry* 2000, 55, 597-601.
- Takanashi, M.; Takizawa, Y.; Mitsuhashi, T. Chem. Lett. 1974, 869-871.
- 9. Akgul, Y. Y.; Anil, H. Phytochemistry 2003, 63, 939-943.
- Li, Q. L.; Li, B. G.; Qi, H. Y.; Gao, X. P.; Zhang, G. L. *Planta Med.* 2005, 71, 847-851.
- Wang, F.; Hua, H. M.; Bian, X.; Pei, Y. H.; Jing, Y. K. J. Nat. Prod. 2006, 69, 807-810.
- Teles, H. L.; Hemerly, J. P.; Paulettit, P. M.; Pandolfi, J. R.; Araujot, A. R.; Valentini, S. R.; Young, M. C.; Bolzani, V. S.; Silva, D. H. *Nat. Prod. Res.* 2005, *19*, 319-323.
- Moon, H. I.; Kim, M. R.; Woo, E. R.; Chung, J. H. Bio. Pharm. Bull. 2005, 28, 2003-2006.