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Since the pioneering work1 of Pederson, Cram and Lehn,

many molecular receptors capable of interacting selectively

with various substrates have been described.2 Particularly,

the development of peptide-binding receptors3 is of great

interest because of its relevance to peptide-protein recogni-

tion processes in biological systems. 

Recently, self-assembly by exploiting noncovalent inter-

actions such as metal-ligand coordinate bond is emerging as

a novel strategy in construction of peptide-binding synthetic

molecules.4 

Here, as the continuing efforts to develop selective pep-

tide-binding receptors, novel C2-symmetric metallomacro-

cycles are described.

Syntheses of receptors 1-4 began with the preparation of

the flexible ligand (9), as shown in Scheme 1. DIC-pro-

moted amide coupling reaction between N-Boc-(L)-phenyl-

alanine and 4,4'-methylenedianiline provided the starting

material 5. DMAP-catalyzed amide coupling reaction be-

tween Boc-deprotected bis-amine of 5 and bis-pentafluoro-

phenyl ester 6,5 and the subsequent deprotection of allyl

groups and imine formation with benzyl amine provided the

ligand 9. Metallomacrocycles (1-4) were prepared by mixing

ligand 9 and the corresponding metal chloride, acetate or

acetoacetonate in ethanol, stirring for 12 hrs under reflux

conditions with 55, 52, 49 and 45%, respectively. 

The products, metal complexes (1-4) are air-stable and

moisture-insensitive, and the structures of 1-4 were esta-

blished by mass spectrum, 1H NMR spectroscopy, IR and

UV spectroscopy.

Recently, combinatorial chemistry has become a major

tool in the elucidation of the binding properties of receptors.6

Receptor 2 has the distinct red color due to transition metal

ion (Fe(III)), and thus ideal for solid phase color binding

assay using encoded combinatorial library of peptide sub-

strates. 

Receptor 2 was screened against a tripeptide library on

hydrophobic polystyrene in CHCl3.
7 The library was pre-

pared by encoded split synthesis and has the general

structure Ac-AA3-AA2-AA1-NH(CH2)6-C(O)NH-Poly-

styrene.8 Decoding the tripeptides on the colored beads by

using electron capture gas chromatography revealed selec-

tive peptides-binding properties of receptor (2). The most

tightly binding substrates with macrocyclic compounds (2)

are shown in Table 1. 

Scheme 1. Syntheses of Metallomacrocycles (1-4); (a) TFA, then NEt3/DMAP with 6. (b) i. Pd(OAc)2, P(Ph)3, HCOONHEt3, ii. Benzyl
amine in EtOH. (c) reflux in EtOH with Zn(OAc)2 for 1, FeCl3 for 2, Co(OAc)2 for 3 and V(O)(acac)2 for 4.

Figure 1. Structures of Metallomacrocycles (1-4). 
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The binding data in Table 1 reveal a number of notable

trends. For example, receptor 2 was found to bind strongly

with the substrate with (L)Ala (5/15), (D)Leu and (L)Lys (6/

15and 7/15) and, (L)Ala and (L)Asn (4/15 and 3/15) at AA1,

AA2 and AA3 positions, respectively.

To confirm the findings and to estimate the energetic

extents of the selectivities observed, several peptides were

resynthesized and their association with 2 measured in

CHCl3.
9 The results are summarized in Table 2. The binding

energies were found to be −4.45 ~ −4.86 kcal/mol. The other

substrates found by binding assay are expected to have the

similar range of binding energies. The binding energy with

Polymer-Gly-Gly-Gly-Ac, which was not bound with

receptor 2 in assay, was found to be both less than −0.5 kcal/

mol.

To test the notion that the modification of the shape of

artificial recognition sites using the different metal ions in

metallomacrocycles can allow to change the peptide-binding

properties of artificial receptors, a polypeptide was synthe-

sized and its association with 1-4 were measured in CHCl3.

The results are summarized in Table 3.

The binding data in Table 3 showed clearly that the subtle

changes in the coordination number and geometry of

different metals can affect markedly the peptide-binding

properties of metallomacrocyclic receptors. For example,

these data showed that the changes in metal ion from Fe(III)

to Zn(II) reduce the binding energies by ~4.7 kcal/mol. Also,

changes in metal ion from Fe(III) to Co(II), V(IV) reduce the

binding energies by 1.5 and 1.8 kcal/mol, respectively.

In conclusion, receptor-like molecules with the well-defin-

ed binding cavity were successfully prepared by exploiting

coordinate bond between transition metal and ligands.

Furthermore, combinatorial binding studies revealed that

these metal-templated self-assembling receptors have the

highly selective peptide-binding properties. Further studies

on the structures of complexes between receptors and

peptide substrates, and the peptide-binding properties of the

other related synthetic receptors are in progress in this

laboratory.

Experimental Section

Synthesis of 5. To solution of 1.54 g of N-Boc-(L)-

phenylalanine (5.800 mmol) in 6 mL of dichloromethane

were added 0.5 g of 4,4'-methylenedianiline (2.052 mmol),

0.783 g of HOBT (5.800 mmol) and 0.91 mL of DIC (5.800

mmol) at 0 oC. After the stirring for 5 hr at room

temperature, all volatiles were removed at reduced pressure.

The mixture was dissolved in dichloromethane and organic

layers was washed with 1 M HCl, saturated NaHCO3, and

brine and dried with MgSO4. The residue was purified by

flash chromatography on silica gel using 20% ethyl acetate

in hexane to give 5 as an amorphous white solid (1.13 g,

65%): 1H NMR (CDCl3) δ (ppm) 9.20 (br, 2H), 7.46 (m,

4H), 7.19 (m, 4H), 7.12 (m, 6H), 7.01 (m, 4H), 6.05 (br, 2H),

4.82 (br, 2H), 3.91 (s, 2H), 3.07 (m, 4H), 1.32 (s, 18H).

To a solution of 0.4 g of 5 (0.577 mmol) in 8 mL of

dichloromethane was slowly added 2 mL of TFA. After

stirring for 4 hr at room temperature, all volatiles were

removed at reduced pressure. The crude di-TFA salts of 5

were used the next reaction without further purification.

Synthesis of 7. To solution of 0.4 g of the di-TFA salts of

amine intermediate (0.577 mmol) and 0.58 g of the penta-

fluorophenylester 6 (1.443 mmol) in 7 mL of DMA was

added 0.14 g of DMAP (1.155 mmol) and 0.6 mL of DIEA

(3.462 mmol) at 0 oC. After the stirring for 18 hr at room

temperature, all volatiles were removed at reduced pressure.

The residue was purified by flash chromatography on silica

gel using 4% MeOH in dichloromethane to give bis-allyl

protected intermediate of 7 as an amorphous white solid

(0.26 g, 49%): 1H NMR (DMSO-d6) δ (ppm) 10.28 (s, 2H),

10.13 (s, 2H), 8.37 (d, J = 8.0 Hz, 2H), 7.47 (m, 4H), 7.24

(m, 10H), 7.18 (m, 2H), 7.14 (m, 4H), 7.06 (m, 4H), 6.05 (m,

2H), 5.31 (d, J = 17.0 Hz, 2H), 5.19 (d, J = 10.5 Hz, 2H),

4.77 (m, 2H), 4.64 (m, 8H), 3.83 (s, 2H), 3.10 (m, 2H), 2.89

(m, 2H).

Synthesis of 8. To solution of 0.138 g of bis-allyl

protected compound 7 (0.149 mmol) and 0.6 mL of DIEA

(3.462 mmol) in 20 mL of MeOH were added palladium

acetate 3.33 mg (10 mol%), triphenyl phosphine 15.58 mg

(40 mol%), TEA 0.124 mL (0.891 mmol), and formic acid

Table 1. Sequences (Resin-AA1-AA2-AA3-Ac) selected by
binding assay with receptor (2)

Entry Entry

1 (L)Ala-(D)Leu-(L)Ala 2 (L)Ala-(L)Lys-(L)Leu

3 (L)Ala-(D)Leu-(L)Ala 4 (D)Phe-(D)Leu-(L)Ala

5 (L)Asp-(L)Lys-(L)Leu 6 (L)Ala-(D)Leu-(L)Asn

7 (D)Val-Gly-(D)Asn 8 (D)Val-(L)Lys-(L)Asn

9 (L)Asp-(L)Lys-(L)Leu 10 (D)Val-(L)Lys-Gly

11 (L)Leu-(D)Leu-Gly 12 (L)His-(D)Leu-(L)Ser

13 (L)Val-(L)Lys-(L)Ser 14 (L)Ala-(L)Lys-(L)Asn

15 (L)Val-(L)Lys-(L)Ala

Table 2. Binding of 2 and Peptides in CHCl3

Peptide
Binding Energy 

(kcal/mol)

Polymer-(L)Ala-(D)Leu-(L)Ala-Ac −4.45

Polymer-(L)Ala-(D)Leu-(L)Asn-Ac −4.58

Polymer-(D)Val-(D)Leu-(L)Ala-Ac −4.74

Polymer-(D)Val-(D)Leu-(L)Asn-Ac −4.86

Polymer-Gly-Gly-Gly-Ac < −0.5

Table 3. Binding of 1-4 and Peptide in CHCl3

Peptide Receptor
Binding Energy 

(kcal/mol)

Polymer-(D)Val-(D)Leu-

(L)Ala-Ac

1 ~0

2 −4.74

3 −3.15

4 −2.91
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0.034 mL (0.891 mmol) and refluxed for 3 hr under a

nitrogen atmosphere. The solution was acidified with 1 M

HCl and extracted with dichloromethane. The crude

products were diluted with dichloromethane to give 8 as an

amorphous white solid (74 mg, 59%) that were collected by

filtration: 1H NMR (DMSO-d6) δ (ppm) 10.40 (s, 2H), 10.38

(s, 2H), 10.16 (s, 2H), 8.75 (d, J = 8.5 Hz, 2H), 7.49 (d, J =

5.0 Hz, 4H), 7.29 (m, 5H), 7.22 (m, 5H), 7.12 (m, 8H), 6.81

(m, 2H), 4.82 (m, 2H), 4.56 (d, J = 15.0 Hz, 2H), 4.48 (d, J =

15.0 Hz, 2H), 3.83 (s, 2H), 3.13 (m, 2H), 2.93 (m, 2H).

Synthesis of 9. To a solution of 0.2 g of 8 (0.236 mmol) in

40 mL of EtOH : DMF (1 : 1) was added 0.059 mL of

benzylamine (0.542 mmol). After refluxing for 14 hr under a

nitrogen atmosphere, the crude products precipitated by

adding ethyl ether. The crude products were recrystallized

from EtOH/ethyl ether to give 9 as an amorphous yellow

solid (184 mg, 76%): 1H- NMR (DMSO-d6) δ (ppm) 13.80

(br, 2H), 10.07 (s, 2H), 8.71 (s, 2H), 8.27 (d, J = 8.5 Hz, 2H),

7.46 (d, J = 6.5 Hz, 4H), 7.36 (m, 10H), 7.24 (m, 2H), 7.19

(m, 8H), 7.10 (m, 10H), 4.82 (s, 4H), 4.74 (m, 2H), 4.48 (m

4H), 3.83 (s, 2H) 3.06 (m, 2H), 2.87 (m, 2H); 13C-NMR

(DMSO-d6) δ (ppm) 39.043, 41.163, 55.368, 62.263,

69.551, 118.697, 119.184, 119.959, 120.759, 125.795,

127.581, 128.422, 128.892, 129.259, 129.771, 130.051,

130.340, 137.739, 137.780, 138.321, 139.579, 147.848,

153.886, 167.513, 168.973, 170.524; IR (KBr) 1659, 1632,

1521, 1467, 1438 cm−1; MS (FAB) m/z = 1027 (MH)+.

Synthesis of 1. To a solution of 50 mg of 9 (0.0487 mmol)

in 40 mL of dichloromethane : MeOH (1 : 1) was added

10.68 mg of zinc(II) acetate dihydrate (0.0487 mmol). After

refluxing for 18 hr under a nitrogen atmosphere, all volatiles

were removed at reduced pressure. The crude products were

recrystallized from dichloromethane/hexane to give 1 as an

amorphous white yellow solid (29 mg, 55%): 1H NMR

(DMSO-d6) δ (ppm) 9.95 (m, 2H), 8.37 (s, 2H), 8.26 (d, J =

8.5 Hz, 2H), 7.37 (m, 6H), 7.18 (m, 10H), 7.06 (m, 10H),

6.87 (m, 6H), 6.33 (m, 2H), 4.65 (d, J = 5.5 Hz, 2H), 4.41

(m, 4H), 4.26 (m, 4H), 3.79 (m, 2H), 2.99 (m, 2H), 2.85 (m,

2H); 13C-NMR (DMSO-d6) δ (ppm) 31.377, 38.479, 54.995,

63.902, 70.505, 113.604, 119.611, 120.291, 126.938,

128.289, 128.677, 129.013, 129.158, 129.516, 129.586,

129.772, 129.887, 130.540, 137.174, 137.310, 137.809,

137.889, 151.227, 162.265, 169.314, 170.025; IR 1658,

1619, 1543, 1514 cm−1; UV/Vis (CH2Cl2 soln) 327, 370 nm;

MS (FAB) m/z = 1089 (MH)+.

Synthesis of 2. To a solution of 50 mg of 9 (0.0487 mmol)

in 48 mL of MC : MeOH (1 : 1) was added 13.15 mg of

iron(III) chloride (0.0487 mmol). After refluxing for 18 hr

under a nitrogen atmosphere, all volatiles were removed at

reduced pressure. The crude products were recrystallized

from dichloromethane to give 2 as an amorphous brown

solid (28 mg, 52%) that were collected by filtration: IR

1658, 1608, 1541, 1516, 1215 cm−1; UV/Vis (CH2Cl2 soln)

333, 520 nm; MS (FAB) m/z = 1081 M+.

Synthesis of 3. To a solution of 50 mg of 9 (0.0487 mmol)

in 40 mL of MC : MeOH (1 : 1) was added 10.54 mg of

cobalt(II) acetate tetrahydrate (0.0487 mmol). After reflux-

ing for 18 hr under a nitrogen atmosphere, all volatiles were

removed at reduced pressure. The crude products were

recrystallized from dichloromethane/ethyl ether to give 3 as

an amorphous green solid (26 mg, 49%): IR 1664, 1615,

1516, 1444 cm−1; UV/Vis (CH2Cl2 soln) 303, 380 nm; MS

(FAB) m/z = 1084 (MH)+.

Synthesis of 4. To a solution of 50 mg of 9 (0.0487 mmol)

in 40 mL of MC : MeOH (1 : 1) was added 12.9 mg of

vanadyl acetylacetate (0.0487 mmol). After refluxing for 18

hr under a nitrogen atmosphere, all volatiles were removed

at reduced pressure. The crude products were dissolved in

EtOH and obtained after evaporating from solvent to give 4

as an amorphous green solid (23 mg, 45%): 1H NMR

(DMSO-d6) δ (ppm) 10.15 (d, J = 15.5 Hz, 2H), 8.60 (s, 2H),

8.30 (d, J = 8.5 Hz, 2H), 7.49 (m, 8H), 7.32 (m, 8H), 7.21

(m, 8H), 7.16 (m, 4H), 7.02 (d, J = 3.5 Hz, 2H), 6.97 (d,  J =

3.5 Hz, 2H), 6.64 (t, J = 7.0 Hz, 2H), (m, 34H), 4.93 (s, 4H),

4.76 (m, 2H), 4.59 (s, 4H) 3.83 (s, 2H), 3.09 (m, 2H), 2.89

(m, 2H); IR 1658, 1607, 1517, 1454, 997 (V=O) cm−1; UV/

Vis (CH2Cl2 soln) 333, 370, 424 nm; MS (FAB+) m/z = 1092

(MH)+.
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