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Monte Carlo simulations of hard-spheres confined in parallel hard walls have been carried out extensively at
various densities and for various wall distances. The compressibility factors in the directions parallel and
normal to the wall have been calculated from the radial free space distribution function (RFSDF) with the
results showing that the compressibility factors normal to the wall are smaller than those in parallel direction
and that a solid phase is formed in the direction normal to the wall while a fluid phase remains in the parallel
direction. An order parameter is found to classify the phases whether a system (or a molecule) is in a fluid or a
solid state. The compressibility factors of narrow wall are very small compared to those when the wall is put
away. A plausible mechanism of the rise of sap in xylem vessel has been proposed.

Keywords : Radial free-space distribution function, Hard-wall, Order parameter, Anisotropic phase transition,
Sap rise.

Introduction wall are calculated from the slope of each function.

The hard-sphere system is a simple model but it often Method
represents dense fluid and solid systems reasonably. The
systems of hard-spheres in a wall or near a wall have beenThe RFSDF{(r), is obtained in the MC procedure by the
examined by molecular dynamiésand the Monte Carlo following ratio:
(MC) method™® and they have been also studied theoreti- .
cally & 7@ = Acceptances _of displacement of

Different from the hard-spheres in a bulk phase, the hard- Trials of displacement of
spheres near a wall have reduced-dimensional maign, wherer is the distance reduced with hard-sphere dianoeter
the two-dimensional hard-discs near a wall are pushedhe RFSDF represents the cavity structure formed by
against the wall and are constrained to a quasi-oneneighboring molecules. When the cavity is not isotropic, we
dimensional motioR.lIt is also found that the hard-spheres in can define the function in a directional way. The (radial) free
a wall have a directional anisotropy. The pressure parallel tepace distribution function parallel to the wafl(r), is
the wall and normal to the wall observed by moleculardefined and calculated by attempting the trials of move only
dynamics simulations are differénThe pressure normal to to the parallel direction to the wall, and that normal to the
the wall was lower than the parallel one, however their phaseall, { . (r), is calculated by the same way but the trials of
difference was not observed. The phase separation imove are performed only to the normal direction to the wall.
confined system is of interest in genéfaf In this paper, The RFSDF starts from 1 at 0 and decreases exponenti-
the hard-spheres confined in parallel hard walls at variouslly, in general. Therefore it has been expressed well in the
densities and for various wall distances have been exterfellowing form*’
sively studied by the MC method and the compressibility

1)

— - _ 3
factors parallel and normal to the wall are calculated using €ur) = exptayr = bir) 2)
the radial free space distribution functions (RFSDF), differ-and
ently from the velocity analysis method as in the usual Z2.(r) = explair - b.rd). 3)

molecular dynamics simulations. The RFSDF is found to be
a very useful function to calculate various thermodynamicWith the same way to the exact relation between the
properties such as the pressure, entropy (or chemicaompressibility factor and RFSBF® in the case of usual
potential}?*®*and even the compressibilifyit is not easy to  symmetric boundary condition (see for an example Eq. (3.9)
differentiate the parallel and normal pressure to the wall obf ref. 18), the compressibility factor parallel to the wall,
the hard-sphere system by an MC method, since the velocify\V/RT, and that normal to the walp,V/RT, are calculated,
components of molecules are not calculated with MCrespectively, by the slope of the logarithm of each RFSDF at
method and the pressure components are not given analy= 0, as follows,

tically for this hard-sphere system. However, the RFSDFs Y >
parallel and normal to the wall are defined, and the two % =1+Zy 4
different compressibility factors parallel and normal to the
\'
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in Table 2 at several densities along various wall distances.
The MC simulations are carried out at various densities anth general, the compressibility factors parallel to the wall are
for various wall distances. The periodic boundary conditionlarger than the respective ones normal to the wall. And both
is applied only to the Y-Z plane and the walls are putcompressibility factors are smaller than those when the wall
perpendicular to the X-axis departed from the distdnce is put away. The compressibility factors of short wall
The number densityp=N/V, used in this calculation is distancesl{c < 6) are much smaller than those when the
defined by assuming the volumé,only where the centers wall disappears. The molecules near the wall are two-
of molecules locatei.e., the forbidden marginal space of dimensionally packed against the wall and thus they have
half diameter of hard-sphere molecule from both walls idarge free spaces(o/2) is the contact value of the wall and
diminished. AndN is the number of molecules used in the hard-sphere molecules for the density profile along X-axis.
simulation. Since the sides of periodic unit box decreaseit very low densities the wall repels the molecules, and
significantly, in Y-Z plane in the case of long wall distance, therefore the highest peak is off the surface of the wall. At
a large number of molecules must be required in the
simulations. Therefore, 500 molecules are used when Table 1 The compressibility factors and the coefficients for
110, 900 molecules are used whew®H L < 310, and 1200  RFSDF at various densities
mqlecgles wherk is longer than 3& Thg initial configu? o0 (0l2) pVIRT pVIRT 2y by a b,
ration is a randomly packed one in a unit box and 2 million
configurations from the beginning are discarded, and theré-/9=3
after 3 million samplings are averaged. Among these 3 01
million samplings, one third of them are for parallel moves ©-2
only, another one third are for normal moves only, and the 03
other one third are moved to uniform radial directions. A

0.87 118 117 0.2757 -0.02056 0.2527 -0.02710
105 141 138 0.6130 -0.05305 0.5724 -0.05734
119 167 163 1.008 -0.09200 0.9469 -0.08358
140 200 195 1503 -0.1527 1.418 -0.1137
05 172 239 232 2084 -0.2167 1973 -0.1360
06 187 291 268 2862 -0.3487 2529.3164

0.7 223 350 324 3748 -0.5460 3.358.4652

Testing the validity of this method of anisotropic calcu- 98 2.88 426 393 4885 -1.101  4.4011.284
lations in Egs. (4) and (5), the compressibility factiop/RT 09 334 556 473 6082 -1.222 5.598.021
and p.V/RT are obtained to be 7.00 and 6.45 gaf = L/0=6
0.8839, L= 6) and 2.71 and 2.66 (ab® = 0.4714) /0 = 01 072 123 122 03442 -0.03190 0.3262 -0.01729
7), respectively. These values are in good agreement with the?-2 0.94  1.51  1.49  0.7647 -0.07523 0.7281 -0.04123
molecular dynamics calculations of Alley and Aldgéhat 03 1.22 185 182 1270 -0.1269 1.230 -0.07254
are 7.03, 6.31, 2.71, and 2.57, respectively. The RFSDFs ard-4 152 228 224 1918 -0.2107 1853 -0.09146
plotted in Figure 1, in whick(r) has the deeper sloperat 185 282 276 2725 -03099 2632 -0.06884
0 but larger value at long distance th@n(r) does. The 06 237 354 337 3816 -0.5271 3.558.4546
compressibility factors and the coefficients for the least 97 3.00 4.46 420 5192 -0.6926 4.796L.576
square fit values of RFSDF to Egs. (2) and (3) were listed in 08 412 579 535 7.188 -2.358  6.5212.622

Table 1 for several wall distances along various densities anLd/O-9 114-94 731 667 9460 -1.357 8498 10.003
o=

0.1 069 123 1.23 0.3509 -0.03005 0.3407 -0.02298
0.2 0.89 153 1,51 0.8000 -0.07799 0.7684 -0.05241
03 125 191 1.89 1362 -0.1361 1.331 -0.1003
04 162 239 236 2089 -0.2234 2039 -0.1237
0.5 210 3.03 298 3.049 -0.3602 2.967 -0.1377
0.6 269 387 3.76 4304 -05630 4.139.06814
0.7 352 502 482 6.016 -0.9219 5.7310.8711

0.8 456 6.58 6.29 8.371 -1.989  7.9382.548

09 6.09 867 819 1150 -1.590 10.786.340
L/o=21

0.1 063 124 1.23 0.3581 -0.03251 0.3505 -0.02627
0.2 0.88 154 153 0.8109 -0.07387 0.8011 -0.06290
03 122 191 1.89 1365 -0.1363 1.335 -0.1014
04 160 246 244 2182 -0.2253 2154 -0.1631
05 211 316 312 3241 -0.3949 3.178 -0.2352
0.6 286 4.09 4.00 4.628 -0.6682 4.509.03102
0.7 387 532 522 6479 -0.6423 6.328.1075

0.8 523 7.08 6.92 9.123 -0.7533 8.873.270

09 7.09 967 939 13.00 -3.918 12.584.126

Results and Discussion

&(r)

Figure 1. The directional RFSDFs &fo = 6. The solid lines are
Z.(r) and dotted lines a (r), respectively. The densitiger® are
denoted on the curves.
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Table 2 The compressibility factors and the coefficients for RFS-
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12

DF of various wall distances

L/o n(a/2) pMRT pVIRT g by, a. b, 104
pa®=0.4

3 140 200 195 1503 -0.1527 1.418 -0.1137 ]

4 144 215 211 1717 -0.1797 1.664 -0.08857 8-

5 148 222 218 1.833 -0.1196 1.777 -0.07080

6 147 228 224 1918 -0.2107 1.853 -0.09146

11 152 239 236 2089 -0.2204 2.039 -0.1237 E\E 6

16 151 242 240 2148 -0.2228 2.099 -0.1286 s

21 160 246 244 2182 -0.2253 2.154 -0.1631

26 1.68 247 245 2200 -0.2262 2.176 -0.1662 49

31 177 248 247 2222 -02333 2199 -0.2043

36 1.82 249 247 2232 -02356 2.206 -0.2033
pc®=0.6 27

3 187 291 268 2862 -0.3487 2.526.3164

4 208 325 3.01 3374 -05858 3.01B8.5281 0

5 226 343 322 3.648 -0.5788 3.330.5610 0.0 02 04 056 08 10
6 235 354 337 3.816 -0.5271 3.556.4546 oG’

11 269 387 376 4304 -0.5630 4.128.06814

16 287 401 391 4515 -0.5297 4.370.1232 Figure 2. The .compressibility fac.tors of variphsdenoted on the
21 285 40 40D 420 Do asoRO302 NS Tl SIOES el Wi i fres o o e P
26 283 413 405 4691 -06268 4.575 -0.026131hq up;permost thick solid line is for the compressibility facfor o
31 295 414 411 4716 -05419 4.664 -0.2864 no walls [ref. 17].

36 295 419 413 4779 -0.6594 4.696 -0.2286
pa*=0.8 .

3 288 422 394 4828 -0.8548 4.418.7432 ]

4 322 494 448 5908 -1438 5.223.101 1 067=0.8 g

5 360 538 495 6.574 -1.393 5.922.200 74 ——8

6 384 579 535 7.188 -2.358 6.522.622 g//”

11 456 658 629 8371 -1989 7.922.548 5]

16 510 6.89 6.69 8.840 -1.199 8.522.783 °/

21 523 708 692 8873 -0.910 8.823.920 ,..9,“

26 525 725 711 9374 -2.053 9.171.099 = °] °,° 26=0.6

31 541 732 721 9487 -1759 9.31D.7622 xr qﬂ '

36 515 736 7.29 9537 -0.4351 9.420.7724 o>_ 44 o /8/95—9:9:°$9

41 503 742 733 9.635 -0.6790 9.499.5478 Oog”

3 q’hm p03=0.4

high densities, the molecules are pushed against the wa 1" __g——ao——u——g=—0=—=0
and the highest peak is at the surface. These data in Table 21 &7
and 2 are plotted in Figures 2 and 3, respectively. There exi ]
fluid-to-solid phase transitions in the normal direction to the
wall aroundpg® = 0.5~0.6. This is not clear in the scale as in hes 1 20 0 "0
Figure 2, however the difference between the compressib Lo

lity factors in parallel and normal direction plotted in Figure _ o

4 shows the phase difference obviously. Whenever the quid]'f'gUIre 3. Thle samelz as F'%“"? 2, howet:/er the Comprﬁ.si'tl’.'"ty

to-solid phase transitions occur, the coefficibritas been oafcégrcsh%r:ngiotted along wall distance. The uppermost thick lines
. i - . ty are of no walls [ref. 17].

changed from minus to pld$2’and this is not the exception

in this case. In Table 1, the sign of coefficibns switched

from minus to plus betwegmo® = 0.5 and 0.6. Therefore the set of particles® Whenb is negative (fluid phase), the mean

coefficient b must be an order parameter to classify thefield force at large distance is smaller than that of equili-

phases whether the system is a fluid phase (Whém  brium position (ar = 0). This means that once the thermal

negative) or a solid phase (whbrs positive). As is well  pressure (bigger than the forcerat 0) is given onto the

known? the negative logarithms of the distribution functions molecule by a kinetic collision, the molecule can slide out

are the corresponding potentials of average force (in units dfom the equilibrium position. On the contrary, wheiis

kT), and their gradients yield the average forces in the givepositive (solid phase), since the force at large distance is
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Figure 4. The differences of compressibility factors normal to the
wall from those parallel to the wall of several wall distances listed
on the curves. The lines are least square fits and each break po
was chosen approximately.

Figure 5. The compressibility factors along X-axis. Squares are the
compressibility factors in the parallel direction, and circles are
those in the normal direction. Solid circles represent the solid phase
while open symbols do the fluid phase.

bigger than that at= 0 , the molecule is repelled back to the surface move only in the parallel direction, while the
position and is confined in the cell. The fluid-to-solid phasemolecules far from the wall move all arounik., the
transition occurs arounab™ [ 1.0 for the usual hard-sphere molecules at the surface are in the solid state in the normal
system when the three dimensional periodic boundargirection. If a fluid phase is differentiated from the solid
condition is applied or the wall-effect disappedre In phase by the coefficiett, it is of convenience to use this
Figure 4, the transition behavior in caseLéd = 3 (The  method for studying transition phenomena in various fields
centers of molecules are located within the wall distance ofuch as the melting at a surf&&hough this simulation is
20 only.) is a bit different from others, probably becausefor the hard-sphere interaction with no attractive force, the
most of molecules are located near the surfaces of wall whgshenomena of anisotropic phases (a solid phase in the
the wall is very narrow, and the transition is made at a timegirection normal to the wall and a fluid phase in parallel
while the transitions are done layer by layer from the surfaceirection) is associated with the situation of the rise of sap in
of wall with the increase of density when the wall distancesa xylem vessel, as a climber goes up (a fluid phase) between
are long. The phase change regions are not dependent of tearrow crevice by bearing his weight with stretched arms
wall distance in this hard-sphere system, while in theand legs (a solid phase) normal to the wall.
Lennard-Jones system, a slight change in pore width causes
a large change in the freezing/melting hysteresis betfvior. References
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