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Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar
heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range
of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with
back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa,
temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs
and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained
neural networks could fairly represent dependence of the heat capacity on the molecular descriptors,
temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and
4.642, respectively. 
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Introduction

Heat capacities of organic solutes in water are of great
interest for calculating thermodynamic properties of organic
aqueous systems at super ambient conditions. The temper-
ature integration of the heat capacity data allows obtaining
the standard chemical potentials and activity coefficients
needed for calculating phase and chemical equilibria at
conditions of interest for geochemistry, power cycle
chemistry and hydrothermal technologies.1,2 Only a limited
amount of data are available at upper temperatures and
pressures. The main reason is certainly a time consuming
and costly task of the calorimeter construction since com-
mercial instruments allowing the heat capacity determin-
ation over a range of temperatures do not have the precision
necessary for the calculation of heat capacity. For this
reason, it is very valuable to predict the heat capacity at
higher temperatures and pressures using minimum number
of experiments. The prediction of physicochemical and
biological properties/activities for organic molecules is the
main objectives of the quantitative structure-property/
activity relationships (QSPRs/QSARs).3-9 QSPR/QSAR
models are obtained on the basis of the correlation between
the experimental values of the property/activity and descrip-
tors reflecting the molecular structure of the respective
compounds. Since these theoretical descriptors are deter-
mined solely from computational methods, a priori predic-
tions of the properties/activities of compounds are possible,
no laboratory measurements are needed thus saving time,
space, materials, equipment and alleviating safety (toxicity)
and disposal concerns.10,11 

Various methods for constructing QSPR/QSAR models

have been used including multi-parameter linear regression
(MLR), principal component analysis (PCA) and partial
least-squares regression (PLS).12-15 In addition, artificial
neural networks (ANNs) have become popular due to their
success where complex non-linear relationships exist amongst
data.16-18 ANNs are biologically inspired computer programs
designed to simulate the way in which the human brain
processes information.18 ANNs gather their knowledge by
detecting the patterns and relationships in data, not from
programming. The wide applicability of ANNs stems from
their flexibility and ability to model non-linear systems
without prior knowledge of an empirical model. For these
reason in recent years, ANNs have been used to a wide
variety of chemical problems such as simulation of mass
spectra, ion interaction chromatography, aqueous solubility
and partition coefficient, simulation of nuclear magnetic
resonance spectra, prediction of bioconcentration factor,
solvent effects on reaction rate, prediction normalized polarity
parameter in mixed solvent systems, acidity constant of
organic compounds and dielectric constant of binary mix-
tures.19-41

In this work an ANN model, for a first time, was generated
for prediction partial molar heat capacity of aqueous
solutions at infinite dilution for various polar aromatic
compounds over wide range of temperatures (303.55-623.20
K) and pressures (0.1-30.2 MPa) using three inputs (the
partial molar heat capacity at infinite dilution for the various
aqueous solutions at T = 303.55 K and P = 0.1 MPa, temper-
ature and pressure). In the next step, a MLR model was
constructed between the heat capacity of the compounds and
four theoretical descriptors. Then an ANN model using the
theoretical descriptors, temperature and pressure was con-
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structed for prediction the heat capacity and the results were
compared with the experimental values of them.

Methods and Procedure

Data set. A reliable database is critically important for the
training of ANNs. Very recently partial molar heat capacity
at infinite dilution have been determined for different aque-
ous solutions of polar aromatic compounds at various
temperatures and pressures.1,2 In this work, the data for
aqueous solutions of phenol, o-cresol, m-cresol, p-cresol,
aniline, o-toluidne, m-toluidine, p-toluidine, m-aminophenol
and o-diaminobenzene that they have at least eight values
for the heat capacity at various temperatures and pressures
have been used as data set. The data set was randomly
divided into three groups: a training set, a validation set and
a prediction set consisting of 74, 21 and 21 data, respec-
tively.18,19 The training and validation sets were used for the
model generation and the prediction set was used for
evaluation of the generated model, because a prediction set
is a better estimator of the ANN generalization ability than a
monitoring (validation) set.

Descriptor generation. In order to calculate the theore-
tical descriptors, the z-matrices (molecular models) were
constructed with the aid of HyperChem 7.0 and molecular
structures were optimized using AM1 algorithm.42 In order
to calculate theoretical descriptors, the molecular geometries
of molecules were further optimized by Dragon package
version 2.1.43 For this purpose the output of the HyperChem
software for each compound fed into the Dragon program
and the descriptors were calculated. As a result, a total of
1481 theoretical descriptors were calculated for each
compound in the data sets (11 compounds).

Feature selection. The theoretical descriptors were
reduced by the following methods: 1) descriptors that are
constant or nearly constant have been eliminated, because
these descriptors can not define the variation of the property
with structure; 2) in order to decrease the redundancy exist-
ing in the descriptors data matrix, the correlation coefficients
for all pairs of remaining descriptors were determined. If a
correlation coefficient was higher than 0.91, the descriptor
with lower correlation with the heat capacity was eliminat-
ed;44,45 3) the method of stepwise multi-parameter linear
regression was used to select the most important descriptors
and to calculate the coefficients relating the heat capacity to
the descriptors.15 The MLR models were generated using
spss/pc software package release 10.0.46 

Neural network generation. The specification of a
typical neural network model requires the choice of the type
of inputs, the number of hidden layers, the number of
neurons in each hidden layer and the connection structure
between the inputs and the output layers. Three-layer
networks with sigmoidal transfer function for neurons were
designed. The initial weights were randomly selected bet-
ween 0 and 1. Before training, the input and output values
were normalized between 0.1 and 0.9. The optimization of
the weights and biases was carried out according to the

resilient back-propagation algorithm.46 For evaluation pre-
dictive power of the networks, the trained ANNs were used
to predict the heat capacity for 21 aqueous solutions
included in the prediction set. The performances of ANNs
are evaluated by the mean percentage deviation (MPD) and
root-mean square error (RMSE), which are defined as
follows:

MPD =  (1)

RMSE = (2)

where Pi
exp and Pi

cal are experimental and calculated values
of the heat capacity using the models.

Individual percent deviation (IPD) is defined as follows:

IPD = 100 ×  (3)

The processing of the data was carried using Matlab 6.5.47

The neural networks were implemented using Neural
Network Toolbox Ver. 4.0 for Matlab.48

Results and Discussion

Prediction the heat capacity without theoretical des-
criptors. There are no theoretical principles for choosing the
proper network topology; so different structures were tested
in order to obtain the optimal hidden neurons and training
cycles.18,19 Before training the network, the numbers of
nodes in the hidden layer were optimized. In order to
optimize the number of nodes in the hidden layer, several
training sessions were conducted with different numbers of
hidden nodes (from one to eleven). The root mean squared
error of training (RMSET) and validation (RMSEV) sets
were plotted versus the number of iterations for different
number of neurons at the hidden layer and the minimum
value of RMSEV was recorded as the optimum value. Plot
of RMSET and RMSEV versus the number of nodes in the
hidden layer has been demonstrated in Figure 1. It is clear
that nine nodes in hidden layer is optimum value.

This network consists of three inputs including the partial
molar heat capacity at infinite dilution for the various
aqueous solutions (at T = 303.55 K and P = 0.1 MPa),
temperature and pressure. Then an ANN with architecture 3-
9-1 was generated. It is note worthy that training of the
network was stopped when the RMSEV started to increases
i.e. when overtraining begins. The overtraining causes the
ANN to loose its prediction power.32 Therefore, during
training of the networks, it is desirable that iterations are
stopped when overtraining begins. To control the overtrain-
ing of the network during the training procedure, the values
of RMSET and RMSEV were calculated and recorded to
monitor the extent of the learning in various iterations.
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Results obtained showed that after 17250 iterations the
value of RMSEV started to increase and overfitting began
(Figure 2).

The generated ANN was then trained using the training set
for optimization of the weights and biases. For evaluation
predictive power of the generated ANN, an optimized
network was applied for prediction the heat capacity of
different aqueous solutions at various temperatures and
pressures in the prediction set, which were not used in the
modeling procedure. Values of partial molar heat capacity
for different aqueous solutions of various polar aromatic
compounds along with the calculated and IPD values at
various temperatures and pressures for training, validation
and prediction sets have been shown in Table 1.

The correlation equation for all of the calculated values of
the heat capacity from the ANN model and the experimental

values is as follows:

(cal) = 0.9606 (exp) + 13.849 (4)

N = 116; R = 0.9859; MPD = 3.017; 
RMSE = 19.642; F = 3950.35

Similarly, the correlation of (cal) values versus 
(exp) in prediction set gives equation (5): 

(cal) = 0.9899 (exp) – 11.531 (5)

N = 21; R = 0.9761; MPD = 4.755; 
RMSE = 29.179; F = 383.29

As can be seen the calculated values of the heat capacity
are in good agreement with those of the experimental values.
Plot of IPD for  values in prediction set versus the
experimental values of it has been illustrated in Figure 3.
The results demonstrate that the MPD value for  values
in the prediction set is 4.755. As can be seen the model did
not show proportional and systematic error, because the
propagation of errors in both sides of zero are random
(Figure 3).

The correlation coefficient (R), RMSE, MPD and stati-
stical F-value of the model for total, training, validation and
prediction sets show potential of the ANN model for
simulation the complicated nonlinear relationship between
the partial molar heat capacity at infinite dilution for
aqueous solutions of the various polar aromatic compounds
on the heat capacity in T = 303.55 K and P = 0.1 MPa,
temperature and pressure (Table 2).

Prediction the heat capacity using theoretical descrip-
tors. After feature selection (see section methods and
procedure), multi-parameter linear correlation of the heat
capacity versus the molecular descriptors in the training set
gives the results in Table 3. It can be seen that four descrip-
tors are appeared in the MLR model. These descriptors are:
complementary information content (neighborhood sym-
metry of 0-order) (CIC0), geary autocorrelation-lag3/
weighted by atomic masses (GATS3m), radia distribution
function-5.0/weighted by atomic masses (RDF050m) and
3D-MoRSF-signal 08/weighted by atomic polarizabilities
(Mor08p). 

The correlation equation for the calculated values of 
versus the experimental values is as follows:

 (cal) = 0.9993  (exp) + 0.2194 (6)

N = 10; R = 0.99968; MPD = 0.1819; 
RMSE =0.7938; F = 21880.83

The next step in this work is the generation of the ANN
model using theoretical descriptors. The artificial neural
network consists of six inputs (including four descriptors
appearing in the MLR model, temperature and pressure) and
one output for . Plot of RMSET and RMSEV versus the
number of nodes in the hidden layer has been demonstrated
in Figure 4. It is clear that three nodes in hidden layer is
optimum value.

Then an ANN with architecture 6-3-1 was generated. To
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Figure 1. Plot of RMSE for training and validation sets versus the
number of nodes in hidden layer.

Figure 2. Plot of RMSE for training and validation sets (for the
ANN model with architecture 3-9-1) versus the number of
iterations.
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Table 1. Values of partial molar heat capacity at infinite dilution for aqueous solutions of various polar aromatic compounds along with the
calculated and IPD (individual percent deviation) at various temperatures and pressures using the ANN models

No. Aqueous solutions Data set T P (exp) (cal)a IPDa (cal)b IPDb

1 phenol training 303.55 0.1 325.1 313.19 −3.66 318.06 −2.17
2 phenol validation 372.23 2.2 312.3 320.64 2.67 325.15 4.11
3 phenol training 422.61 2.1 314.8 323.88 2.88 334.24 6.18
4 phenol training 473.54 2.1 327.6 329.08 0.45 347.02 5.93
5 phenol prediction 523.52 5 364.7 359.64 −1.39 366.56 0.51
6 phenol training 573.38 10 467.5 458.76 −1.87 454.17 −2.85
7 phenol training 574.58 10.2 463.4 463.35 −0.01 458.31 −1.10
8 phenol validation 598.22 13.3 626.8 581.99 −7.15 615.72 −1.77
9 phenol training 524.37 10.1 354.4 360.9 1.83 354.09 −0.09
10 phenol training 573.3 20.2 382.7 378.46 −1.11 375.34 −1.92
11 phenol training 598.17 20.2 463.9 469.32 1.17 468.58 1.01
12 phenol training 474.89 30.3 311 323.5 4.02 316.75 1.85
13 phenol training 523.6 30.1 324.1 326.23 0.66 323.42 −0.21
14 phenol validation 573.22 30 346.9 349.56 0.77 342.33 −1.32
15 phenol training 573.95 30 350.6 350.17 −0.12 342.89 −2.20
16 phenol training 598.2 30.4 374.9 371.1 −1.01 374.58 −0.09
17 phenol prediction 623.2 30.2 446.8 397.94 −10.94 497.17 11.27
18 o-cresol training 303.55 0.1 407 406.84 −0.04 400.39 −1.62
19 o-cresol validation 372.23 2.2 384 402.77 4.89 405.78 5.67
20 o-cresol training 422.61 2.1 389.6 397.15 1.94 409.38 5.08
21 o-cresol training 473.53 2.1 416.5 406.96 −2.29 415.31 −0.29
22 o-cresol prediction 523.51 5 461.9 441.38 −4.44 444.79 −3.70
23 o-cresol training 573.39 10.1 623.3 624.79 0.24 642.81 3.13
24 o-cresol training 574.28 10.1 616 630.64 2.38 652.91 5.99
25 o-cresol training 598.22 13.3 939.3 889.62 −5.29 898.77 −4.32
26 o-cresol training 524.37 10.1 439.9 451.93 2.73 432.55 −1.67
27 o-cresol training 573.3 20.2 513.9 513.44 −0.09 497.34 −3.22
28 o-cresol prediction 598.17 20.3 676.9 658 −2.79 702.49 3.78
29 o-cresol training 474.89 30.3 383.6 386.4 0.73 398.96 4.00
30 o-cresol training 523.6 30.3 397.1 398.5 0.35 407.29 2.57
31 o-cresol validation 573.23 30.1 411.4 447.07 8.67 441.72 7.37
32 o-cresol training 574.04 30 436.2 448.91 2.91 443.46 1.67
33 o-cresol training 598.2 30.4 558.6 519.84 −6.94 520.12 −6.89
34 o-cresol prediction 623.2 30.1 747.9 670.06 −10.41 786.70 5.19
35 m-cresol training 303.55 0.1 397.3 394.61 −0.68 389.87 −1.87
36 m-cresol validation 372.24 2.2 363.8 392.58 7.91 398.54 9.55
37 m-cresol training 422.62 2.1 385.8 395.54 2.52 404.36 4.81
38 m-cresol training 473.53 2.1 399.5 416.8 4.33 410.81 2.83
39 m-cresol training 523.51 5 453.8 448.36 −1.2 432.17 −4.77
40 m-cresol training 573.38 10 587.5 579.85 −1.3 568.24 −3.28
41 m-cresol training 574.48 10.2 587.2 586.69 −0.09 573.94 −2.26
42 m-cresol validation 598.22 13.3 830.2 817.25 −1.56 784.74 −5.48
43 m-cresol training 524.38 10.1 431.9 420.37 −2.67 422.76 −2.12
44 m-cresol training 573.3 20.2 463 451.64 −2.45 465.86 0.62
45 m-cresol prediction 598.17 20.3 612.4 586.86 −4.17 608.29 −0.67
46 m-cresol training 474.89 30.4 373.7 384.75 2.96 387.24 3.62
47 m-cresol training 523.6 30.3 387.2 396.01 2.28 397.79 2.74
48 m-cresol validation 573.23 30.1 430.5 440.45 2.31 425.09 −1.26
49 m-cresol training 573.75 29.8 433.5 441.82 1.92 426.58 −1.60
50 m-cresol prediction 598.2 30.2 490.7 508.79 3.69 480.45 −2.09
51 m-cresol training 623.17 30.2 647.9 648.69 0.12 669.99 3.41
52 p-cresol training 303.55 0.1 400.6 398.57 −0.51 395.41 −1.30
53 p-cresol validation 372.24 2.2 370.4 395.42 6.75 402.43 8.65
54 p-cresol training 422.63 2.1 376.8 394.9 4.8 407.05 8.03
55 p-cresol training 473.53 2.1 397.6 412.21 3.67 412.81 3.83
56 p-cresol prediction 523.51 5 450.7 444.8 −1.31 435.46 −3.38
57 p-cresol training 573.38 10 579.9 596.26 2.82 583.58 0.63
58 p-cresol training 574.1 10.1 576.3 601.48 4.37 588.13 2.05
59 p-cresol training 598.22 13.3 809.2 844.82 4.4 811.10 0.24
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Table 1. Continued

No. Aqueous solutions Data set T P (exp) (cal)a IPDa (cal)b IPDb

60 p-cresol training 524.38 10.1 432.1 432.14 0.01 425.78 −1.46
61 p-cresol training 573.3 20.2 459.8 469.55 2.12 473.14 2.90
62 p-cresol prediction 598.18 20.4 595.6 604.82 1.55 625.71 5.05
63 p-cresol training 474.89 30.4 367.2 385.33 4.94 393.29 7.11
64 p-cresol training 523.6 30.3 383.6 396.88 3.46 402.51 4.93
65 p-cresol validation 573.23 30.3 423 442.46 4.6 429.82 1.61
66 p-cresol training 573.78 29.9 420.7 444.19 5.58 431.68 2.61
67 p-cresol training 598.2 30.4 488 512.12 4.94 488.55 0.11
68 p-cresol prediction 623.17 29.9 622.8 658.76 5.77 702.39 12.78
69 aniline training 303.55 0.1 336.6 342.3 1.69 321.44 −4.51
70 aniline validation 372.24 2.2 327.5 331.28 1.15 329.98 0.76
71 aniline training 422.61 2.1 332.4 335.59 0.96 340.48 2.43
72 aniline training 473.53 2.1 346.8 341.84 −1.43 354.56 2.24
73 aniline prediction 523.52 5 392.2 370.13 −5.63 376.53 −3.99
74 aniline validation 574.26 10.1 519.9 485.41 −6.63 484.48 −6.81
75 aniline training 523.6 30.2 348.6 335.3 −3.81 327.79 −5.97
76 aniline validation 573.58 29.9 384.9 352.4 −8.44 350.81 −8.86
77 o-toluidne training 303.55 0.1 410.5 411.29 0.19 399.79 −2.61
78 o-toluidne prediction 372.23 2.2 405.1 407.32 0.55 404.27 −0.20
79 o-toluidne training 422.61 2.1 402.6 400.03 −0.64 409.15 1.63
80 o-toluidne training 473.53 2.1 431.4 406.3 −5.82 415.43 −3.70
81 o-toluidne validation 523.53 5 482.1 441.88 −8.34 447.07 −7.27
82 o-toluidne training 573.69 10.1 638.6 640.67 0.32 663.27 3.86
83 o-toluidne training 523.59 30 418.8 399.47 −4.62 407.31 −2.74
84 o-toluidne prediction 573.73 29.8 472.7 451.19 −4.55 445.92 −5.66
85 m-toluidne training 303.55 0.1 406.2 405.8 −0.1 396.77 −2.32
86 m-toluidne validation 372.2 2.1 406.1 401.42 −1.15 403.40 −0.67
87 m-toluidne training 422.61 2.1 393.4 396.64 0.82 407.58 3.60
88 m-toluidne training 473.53 2.1 412.9 407.33 −1.35 412.28 −0.15
89 m-toluidne prediction 523.53 5 472.3 441.54 −6.51 428.38 −9.30
90 m-toluidne validation 574.22 10.1 629.5 626.98 −0.4 532.74 −15.37
91 m-toluidne training 523.59 30 414 398.17 −3.82 403.11 −2.63
92 m-toluidne validation 573.73 29.8 456.4 448.2 −1.8 424.61 −6.97
93 p-toluidne training 303.55 0.1 400.2 398.07 −0.53 392.29 −1.98
94 p-toluidne prediction 372.24 2.2 398.7 395.03 −0.92 400.27 0.39
95 p-toluidne training 422.61 2.1 395.4 394.91 −0.12 405.61 2.58
96 p-toluidne training 473.53 2.1 426.2 412.7 −3.17 412.23 −3.28
97 p-toluidne validation 523.53 5 476.5 445.21 −6.57 437.80 −8.12
98 p-toluidne training 573.71 10.1 639.6 597.01 −6.66 607.16 −5.07
99 p-toluidne training 523.59 30 412.5 396.55 −3.87 400.60 −2.88
100 p-toluidne prediction 573.75 29.9 462.3 443.84 −3.99 433.11 −6.31
101 m-aminophenol training 304.47 0.1 285 285.34 0.12 307.12 7.76
102 m-aminophenol validation 372.23 2.2 303.2 308.51 1.75 308.08 1.61
103 m-aminophenol training 422.61 2.1 328.7 328.88 0.05 309.60 −5.81
104 m-aminophenol training 473.53 2.1 332 331.87 −0.04 312.64 −5.83
105 m-aminophenol prediction 523.53 5 342.6 295.57 −13.73 320.64 −6.41
106 m-aminophenol training 574.35 10.1 340.5 340.54 0.01 365.57 7.36
107 m-aminophenol prediction 523.6 30.2 325.4 286.02 −12.1 308.36 −5.24
108 m-aminophenol validation 573.55 29.9 323.8 307.03 −5.18 316.05 −2.39
109 o-diaminobenzene training 303.55 0.1 386.5 386.27 −0.06 388.51 0.52
110 o-diaminobenzene prediction 372.25 2.2 395.8 390.46 −1.35 397.57 0.45
111 o-diaminobenzene training 422.65 2.1 417.9 406.06 −2.83 403.67 −3.41
112 o-diaminobenzene training 473.55 2.1 433.9 437.4 0.81 410.13 −5.48
113 o-diaminobenzene validation 523.55 5 465 461.28 −0.8 430.10 −7.50
114 o-diaminobenzene prediction 574.55 10.2 525.3 517.23 −1.54 560.65 6.73
115 o-diaminobenzene training 523.65 30.2 426.1 392.31 −7.93 396.62 −6.92
116 o-diaminobenzene prediction 573.75 30 443.2 431.98 −2.53 423.31 −4.49

aThe calculated values of  and IPD using the ANN model with architecture 3-9-1. bThe calculated values of  and IPD using the ANN model
with architecture 6-3-1.
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control the overtraining of the network during the training
procedure, the values of RMSET and RMSEV were calcu-
lated and recorded to monitor the extent of the learning in
various iterations. Results obtained show that overfitting
does not exist for this ANN and training is stop after 80000
iterations (Figure 5).

For evaluation predictive power of the generated ANN, an
optimized network was applied for prediction the heat
capacity of different aqueous solutions at various temper-
atures and pressures in the prediction set. 

Values of the partial molar heat capacity for different
aqueous solutions of various polar aromatic compounds
along with the calculated and IPD values at various temper-

atures and pressures for training, validation and prediction
sets have been shown in Table 1.

As can be seen the calculated values of the heat capacity
are in good agreement with those of the experimental values.
The correlation equation for all of the calculated values of
the heat capacity from the ANN model and the experimental

Figure 3. Plot of the IPD (individual percent deviation) for
calculated values of the heat capacity from the ANN model with
architecture 3-6-1 versus the experimental values of it for training,
validation and prediction sets.

Table 2. Statistical parameters obtained by the ANN model with
architecture 3-9-1 for total, training, validation and prediction setsa 

Type of data set N R MPD RMSE F

Total 116 0.9859 3.017 19.642 3950.35
Training 74 0.9915 2.163 14.608 4155.31
Validation 21 0.9841 4.262 22.975 584.37
Prediction 21 0.9761 4.755 29.179 383.29
aN is number of data set; R is the correlation coefficient between
calculated and the experimental values of the partial molar heat capacity
at infinite dilution; MPD is mean percent deviation; RMSE is root mean
square error and F is the statistical F-value.

Table 3. Theoretical descriptors, symbols and coefficients in the MLR model

Name of descriptor Symbol Coefficient

Complementary information content (neighborhood symmetry of 0-order) CIC0 382.718
Geary autocorrelation-lag3/weighted by atomic masses GATS3m −16751.820
Radial distribution function-5.0/weighted by atomic masses RDF050m −12.754
3D-MoRSF-signal 08/weighted by atomic polarizabilities Mor08p −181.680
Constant −433.178

Figure 4. Plot of RMSE for training and validation sets versus the
number of nodes in hidden layer.

Figure 5. Plot of RMSE for training and validation sets (for the
ANN model with architecture 6-3-1) versus the number of
iterations.
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values is as follows: 

(cal) = 0.9760 (exp) + 8.894 (7)

N =116; R = 0.9800; MPD = 3.819; 
RMSE = 23.015; F = 2762.71

Similarly, the correlation of (cal) values versus 
(exp) in prediction set gives equation (8): 

(cal) = 1.154 (exp) – 71.783 (8)

N =21; R = 0.9815; MPD = 4.642; 
RMSE = 29.885; F = 498.20

The results demonstrate that the MPD value for 
values in the prediction set is 4.642. 

Plot of IPD for Cp values in prediction set versus the
experimental values of it has been illustrated in Figure 6. As
can be seen the model did not show proportional and
systematic error, because the propagation of errors in both
sides of zero are random.

The correlation coefficient (R), RMSE, MPD and stati-
stical F-value of the model for total, training, validation and
prediction sets show potential of the ANN model for
prediction the heat capacity of the aqueous solutions at
various temperatures and pressures (Table 4).

As a result, it was found that the properly selected and
trained neural networks could fairly represent the depend-
ence of the heat capacity of the aqueous solutions on
theoretical descriptors, temperatures and pressure. 

Conclusions

Two types of inputs have been applied for prediction
partial molar heat capacity of aqueous solutions at infinite
dilution for various polar aromatic compounds (including
phenol, o-cresol, m-cresol, p-cresol, aniline, o-toluidine, m-
toluidine, p-toluidine, m-aminophenol, p-aminophenol and
o-diaminobenzene) over wide range of temperatures (303.55
-623.20 K) and pressures (0.1-30.2 MPa) using artificial
neural network models. In these models macroscopic and
microscopic properties of the compounds along with
temperature and pressure have been used as inputs and their
output is the partial molar heat capacity. The MPD values of
the models for prediction set are 4.755 and 4.642, respec-
tively. Then the optimized neural network could simulate the
complicated nonlinear relationship between the partial molar
heat capacity for various polar aromatic compounds on the
heat capacity in T = 303.55 K and P = 0.1 MPa (or theore-
tical molecular descriptors), temperature and pressure. As a
result ANNs can be used to predict the heat capacity at
higher temperatures and pressures using minimum number
of experiments.
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