Communications

AuCl₃-Catalyzed Propargylation of Arenes with *N***-Tosylpropargyl Amine: Synthesis of 1,3-Diarylpropynes**

Ka Young Lee, Hyun Seung Lee, Hoo Sook Kim, and Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea *E-mail: kimjn@chonnam.ac.kr
Received April 28, 2008

Key Words: 1,3-Diarylpropynes, AuCl₃, Propargylation, C-N Bond cleavage

1,3-Diarylpropynes are an important class of building blocks in organic synthesis. ^{1,2} One of the most useful method for these compounds is a transition metal-catalyzed propargylation of electron-rich aromatics with propargyl alcohols. ¹ The use of (dppm)Re(O)Cl₃/AgPF₆, ^{1a} [Cp*RuCl-(µ₂-SMe)₂RuCp*(OH₂)]OTf, ^{1b} NaAuCl₄·2H₂O, ^{1c} AuCl₃, ^{1d} BF₃·OEt₂, ^{1d} FeCl₃, ^{1e} BiCl₃, ^{1f} p-TsOH^{1g} TiCl₄/Et₃N, ^{1h} and iodine ¹ⁱ has been reported. As the precursors of the corresponding propargyl cations, the use of propargyl alcohol is the most popular ^{1a-i} and the acetate of propargyl alcohol is the most popular ^{1a-i} and the acetate of propargyl alcohol ^{1j,k} or *O*-propargyl trichloroacetimidate ² were also examined very recently. To the best of knowledge, synthesis of 1,3-diaryl-propynes has not been examined starting from propargylic amine derivatives.

Generation of carbocationic species by C-O bond cleavage have been studied and used extensively in the Friedel-Crafts chemistry.³ However, limited number of papers has been reported on the generation of carbocation by C-N bond cleavage, which involved the cases of DCC (1,3-dicyclohexylcarbodiimide),^{4b} sulfonamide and some amide derivatives.^{4a,c-e} In these respects, we reasoned that the reaction of *N*-tosyl derivative of propargyl amine and arenes could provide another useful method of 1,3-diarylpropynes (Scheme 1).

Thus we prepared *N*-tosylpropargyl amine **1**, as the representative example, by the reaction of *N*-tosylimine and phenylacetylene as reported⁵ and examined the feasibility for the synthesis of 1,3-diarylpropynes **3**. Initially, we examined the reaction of **1** and 1,3-dimethoxybenzene (**2b**) under various conditions (Table 1). The use of AuCl₃, FeCl₃, InCl₃, *p*-TsOH and montmorillonite K10 was examined and the results are summarized in Table 1.⁷ The use

Table 1. Optimization of reaction conditions between the reaction of 1 and 2h

Entry	Conditions	Results	
1	FeCl ₃ (10 mol%), ClCH ₂ CH ₂ Cl, rt, 5 h	78%	
2	InCl ₃ (10 mol%), ClCH ₂ CH ₂ Cl, rt, 2 h	no reaction	
3	InCl ₃ (10 mol%), ClCH ₂ CH ₂ Cl, reflux, 2 h	70%	
4	AuCl ₃ (5 mol%), ClCH ₂ CH ₂ Cl, rt, 1 h	89%	
5	p-TsOH (10 mol%), ClCH ₂ CH ₂ Cl, rt, 2 h	no reaction	
6	p-TsOH (10 mol%), ClCH2CH2Cl, reflux, 1 h	83%	
7	Montmorillonite K10 (100 w/w%),	no reaction	
	CICH ₂ CH ₂ Cl, rt, 2 h		
8	Montmorillonite K10 (100 w/w%),	69%	
	ClCH ₂ CH ₂ Cl, reflux, 2 h		

of InCl₃, *p*-TsOH and montmorillonite K10 at room temperature was completely ineffective (entries 2, 5, and 7). When the reaction mixture was heated to reflux we could isolate desired product **3b** in moderate yields (70-83%, entries 3, 6, and 8). The use of FeCl₃ and AuCl₃ were all efficient at room temperature (entries 1 and 4). Based on mildness, reaction time, the amount of used catalyst, and the yield of **3b**, we thought AuCl₃ is the best choice among the trials.

With this optimized conditions we examined the reaction of **1** and various arene nucleophiles including anisole (**2a**), 1,2,3-trimethoxybenzene (**2c**), furan (**2d**), 2-methylfuran (**2e**), pyrrole (**2f**), phenol (**2g**), and 2-naphthol (**2h**). The corresponding 1,3-diarylpropynes **3a-h** were isolated in good to excellent yields except for the case of pyrrole (entry 6). The reaction of **1** and pyrrole produced **3f** in only 41% (10 mol% AuCl₃, refluxing, 5 h). Besides of electron-rich arenes, allyltrimethylsilane can also be used in the reaction efficiently and we obtained compound **4** in 91% yield (Scheme 2). Leeg

In summary, we disclosed an efficient AuCl₃-catalyzed synthesis of 1,3-diarylpropynes from *N*-tosylpropargylamine with electron-rich arenes under mild conditions.

Table 2. AuCl₃-catalyzed C-N bond cleavage of N-tosylpropargylamine $\mathbf{1}^a$

Entry	NuH	Time (h)	Product (%)	Entry	NuH	Time (h)	Produc (%)	ct
1 [OMe da	1	OMe Ph 3a (92)	5 Ph	0 2e	— 3	Ph 3e (91)	Ph
2 (OMe OI b	1 Me	OMe Ph 3b (89)	OMe 6	H N 2f	5 ^b	HN Ph 3f (41)	Ph
3 (OMe ON ON	1 Ие		Me Me 7 `Ph	OH 2g	1	OH Ph 3g (82)	Ph
4 [o d	2	Ph 3d (83)	8 (2h	1 OH	Ph 3h (75)	OH Ph

^aConditions: Compound **1** (1.0 mmol), nucleophile (3.0 mmol), ClCH₂CH₂Cl (5 mL), AuCl₃ (0.05 mmol), rt. ^bThe reaction was carried out at refluxing temperature with 10 mol% AuCl₃ for 5 h.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund, KRF-2007-532-C00010).

References and Notes

For the synthesis of 1,3-diarylpropynes from propargyl alcohols, see: (a) Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. *Org. Lett.* 2004, 6, 1325-1327. (b) Nishibayashi, Y.; Inada, Y.; Yoshikawa,

M.; Hidai, M.; Uemura, S. Angew. Chem. Int. Ed. 2003, 42, 1495-1498. (c) Georgy, M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005, 127, 14180-14181. (d) Liu, J.; Muth, E.; Florke, U.; Henkel, G.; Merz, K.; Sauvageau, J.; Schwake, E.; Dyker, G. Adv. Synth. Catal. 2006, 348, 456-462. (e) Zhan, Z.-p.; Yu, J.-l.; Liu, H.-j.; Cui, Y.-v.; Yang, R.-f.; Yang, W.-z.; Li, J.-p. J. Org. Chem. 2006, 71, 8298-8301. (f) Zhan, Z.-p.; Yang, W.-z.; Yang, R.-f.; Yu, J.-l.; Li, J.-p.; Liu, H.-j. Chem. Commun. 2006, 3352-3354. (g) Sanz, R.; Martinez, A.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Eur. J. Org. Chem. 2006, 1383-1386. (h) Karunakar. G. V.; Periasamy, M. J. Org. Chem. 2006, 71, 7463-7466. (i) Srihari, P.; Bhunia, D. C.; Sreedhar, P.; Mandal, S. S.; Reddy, J. S. S.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120-8124. Propargylic acetates was also used: (j) Zhan, Z.-P.; Cui, Y.-Y.; Liu, H.-J. Tetrahedron Lett. 2006, 47, 9143-9146. (k) Zhan, Z.-P.; Liu, H.-J. Synlett 2006, 2278-2280. Very recently a new method involving the use of InBr₃ has been added: (1) Yadav, J. S.; Subba Reddy, B. V.; Raghavendra Rao, K. V.; Narayana Kumar, G. G. K. S. Synthesis 2007, 3205-3210.

- 2. Li, C.; Wang, J. J. Org. Chem. 2007, 72, 7431-7434.
- (a) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, Chapter 1.8. (b) Olah, G. A. Friedel-Crafts and Related Reactions; Interscience Publishers: New York, 1964.
- For the generation of carbocationic species by C-N bond cleavage, see: (a) Stamm, H.; Onistschenko, A.; Buchholz, B.; Mall, T. J. Org. Chem. 1989, 54, 193-199. (b) Kim, J. N.; Chung, K. H.; Ryu, E. K. Tetrahedron Lett. 1994, 35, 903-904. (c) Chung, G. H.; Kim, J. N.; Ryu, E. K. Tetrahedron Lett. 1994, 35, 2913-2914. (d) Lee, H. J.; Seong, M. R.; Kim, J. N. Tetrahedron Lett. 1998, 39, 6223-6226. (e) Lee, H. J.; Seong, M. R.; Song, H. N.; Kim, J. N. Bull. Korean Chem. Soc. 1999, 20, 267-268.
- For the synthesis of N-tosylpropargyl amines and related compounds, see: Lee, K. Y.; Lee, C. G.; Na, J. E.; Kim, J. N. Tetrahedron Lett. 2005, 46, 69-74 and further references cited therein.
- For recent applications of AuCl₃ in organic synthesis, see: (a) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669-3671. (b) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650-12651. (c) Hashimi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285-2288. (d) Guo, S.; Song, F.; Liu, Y. Synlett 2007, 964-968. (e) Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058-12059. (f) Jin, T.; Yamamoto, Y. Org. Lett. 2007, 9, 5259-5262. (g) Tang, J.-M.; Bhunia, S.; Sohel, S. M. A.; Lin, M.-Y.; Liao, H.-Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677-15683, and further references cited therein.
- 7. General procedure for the preparation of compound 3a: To a stirred solution of 1 (361 mg, 1.0 mmol) and 2a (325 mg, 3.0 mmol) in 1,2-dichloroethane (5.0 mL) was added AuCl₃ (15 mg, 5 mol%) at room temperature and stirred for 1 h. After reducing the amount of solvent, pure product 3a was obtained by column chromatography (hexanes/CH₂Cl₂, 8:1), 275 mg (92%) as a colorless oil. Other compounds were synthesized similarly and the structures of 3a-h and 4 were confirmed by comparison with the reported spectroscopic data. ^{1a-1}
- 8. The reaction with *m*-xylene or *p*-xylene also showed sluggish reaction even under the optimized conditions.