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Valuable insight into the nonlinear dynamics of a system can be gleaned from its response to a single intense
short pulse. We derive expressions for the corresponding nonlinear response functions and show that the
fluctuation-dissipation theorem may be extended beyond the linear response limit to an arbitrary pulse
intensity. As an illustrative example, we calculate response functions up to 11th order for the regular Lorentz
gas in two dimensions.
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Introduction

The dynamics of condensed matter systems are often
studied experimentally by perturbing the sample with an
external field E(t) (or a sequence of fields) and recording its
relaxation back to equilibrium. From such a response
information about the microscopic dynamics of the system
can be extracted. If we use the observable B to monitor the
evolution of the system, the n-th order response to an
arbitrary perturbation can be succinctly written as 

 × ,   (1)

where the n-th order response function  
 depends on the dynamics of the system, on how the

system couples to the external perturbation and also on the
variable B selected to follow the system’s time evolution. For
a system evolving classically according to Newton’s equa-
tions of motion, the nonlinear response function can be
obtained from perturbation theory:

 = 

 × . (2)

Here  is the equilibrium phase space distribution of the
system, A(x) is the phase space variable appearing in the
field-matter coupling  and  is the
classical Liouville operator of the unperturbed system.

Calculation of nonlinear response functions for classical
many-body systems requires evaluation of stability matrices
describing the time evolution of small displacements in phase
space.1-3 Although such stability matrices can be obtained
from molecular dynamics simulations, they cause severe

numerical problems; due to the fast, exponential growth of
stability matrix elements, averages depending on stability
matrices converge very slowly and nonlinear response func-
tions can be calculated only for short times. The response to
a single pulse of arbitrary magnitude, however, is an
exception. This response may be recast in the form of a
combination of correlation functions and does not depend on
the stability matrix. In that respect, we obtain a generali-
zation to arbitrary order of the fluctuation dissipation
theorem,6-8 which rigorously connects the observable linear
response function  with an equilibrium correlation
function of the unperturbed system (see Eq. 12): Purely
equilibrium simulations are enough, no additional information
is necessary for computing the response and the numerical
simulation is then straightforward.

The n-th order response function to a single short pulse
acting on the system at time t = 0 is 

  (3)

when we propagate the density matrix, i.e., when we operate
in the “Schrödinger representation”. Alternatively we can
propagate the operators, i.e., in the “Heisenberg representa-
tion”.1,2 The response function then assumes the form

.  (4)

Here, .
The Poisson bracket on the right hand side of equation (3)

can be written as

,  (5)

where the phase space functions  are obtained by
repeated application of the Poisson bracket. The first few of
these functions are

,  (6)

,  (7)
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.
 (8)

Here, . Using Eq. (5) we can then recast Eq. (3) in
the form

.  (9)

The response functions to a single short perturbation
become especially simple and easy to interpret if the
observable A is one of the phase space variables. So, let us
assume that  and denote this variable  and its
conjugate momentum p. Then, the single pulse response
function of order n in the Heisenberg picture assumes the
form

.  (10)

The partial derivatives in the above equation can be easily
evaluated with the following recursion formula correspond-
ing to an integration by parts: 

.

 (11)

Here, C is a normalization constant. Repeated application of
this recursion formula yields nonlinear response functions to
arbitrary order:

,  (12)

,  (13)

,  (14)

,  (15)

,  (16)

,  (17)

,  (18)

,  (19)

,  (20)

,   (21)

,  (22)

where  and . Higher order
response functions can be evaluated analogously. The first
equation in the hierarchy, Eq. (12), is known as the
fluctuation dissipation theorem.6-8

As an illustrative example, we have calculated the response
of the Lorentz gas4 to short pulses. This model, shown in
Figure 1, consists of a point particle of mass m with
momentum p moving in a plane through an infinite regular
array of circular scatterers with radius R arranged on a
triangular lattice with lattice constant a. When the particle
collides with a scatterer it is reflected elastically, i.e., its
velocity component normal to the scatterer surface changes
sign. Between collisions the particle moves on a straight line
with constant velocity. Due to the collisions of the particle
with the convex (and therefore dispersing) surface of the
scatterer the dynamics is strongly chaotic.5

Throughout, we study a system in which the scatterer
density is , where  is the close packed density
at which the scatterers are in contact. At this particular
density  and the lattice constant is .
Since at  the horizon is finite, i.e., the particle can
fly freely only for finite distances, the motion of the particle
is strictly diffusive. Initial conditions of the moving particle
are assumed to follow a canonical distribution, i.e., positions

 are homogeneously distributed in the area not
occupied by the scatterers and momenta  are
distributed according to .
All results are presented in dimensionless units with ,
R =1 and m = 1.

Nonlinear response functions from order 1 to 11 obtained
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Figure 1. The Lorentz gas consists of a point particle moving
through an infinite periodic array of hard scatterers in two
dimensions. When the particle collides with a scatterer it is
reflected elastically, i.e., its velocity component normal to the
scatterer surface is inverted. Here we imagine that the moving
particle carries a unit charge and that the perturbation is a short
pulse of strength E accelerating the particle in x-direction.
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numerically for the Lorentz gas using Eqs. (12) to (22) are
shown in Figure 2 as thick lines. Since all even n response
functions vanish by symmetry, only the odd n response
functions are depicted. The thin lines denote results for a
stochastic model to be discussed later. While the first order
response decays almost monotonically, the nonlinear response
functions acquire additional features. The first characteristic
feature appears at approximately half the average time
between collisions which is τ = 0.474 at the density studied
here. As one proceeds to higher order the response functions
begin to display oscillatory behavior which becomes more
pronounced with increasing order. The exact physical origin
of this behavior remains to be explained in detail.

An interesting observations is that for systems with hard
interactions, such as the Lorentz gas, canonical nonlinear
response functions to arbitrary order can be written in terms
of simple microcanonical autocorrelation functions. To see
this, we write the correlation function 
as the canonical average:

× ,  (23)

where U(r ) is the potential energy of the system and r  and p
specify the position and the momentum of the moving
particle, respectively. The integration over space extends
over the unit cell of the triangular scatterer lattice and A is
the area in the unit cell not occupied by a scatterer. The
above expression can be simplified by noting that initial
conditions differing only in the magnitude of the momentum
but not in its direction yield identical trajectories in
configuration space. Integration over all momentum directions
then yields:

,  (24)

where  and  is a
microcanonical correlation function. Since for a system with
hard interactions
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Figure 2. Response functions  to  to a single short
pulse acting on the Lorentz gas depicted in Fig. 1 (all response
functions of even order vanish due to symmetry). The response
functions shown in the figure where obtained from correlation
functions calculated as averages over 2× 109 trajectories initiated at
canonically distributed initial conditions and for a density of ρ =
(4/5)ρ0 where ρ0 is the close packed density. The average time
between collisions is τ = 0.474 in the units described in the main text.

S 1( ) t( ) S 11( ) t( )

Figure 3. Deviation  of the response func-
tions  to  from the response functions predicted by
the exponential model discussed in the main text. Since the
exponential model is based on the assumption that subsequent
collisions are uncorrelated, any non-vanishing deviation  is
due to correlated collisions of the moving particle with the
scatterers.
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i( ) t( )–
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the correlation function  can be finally written as

 ×  ,  (27)

for odd order. For even order,  vanishes. From these
correlation functions response functions can be calculated
using expressions (12) to (22).

This relation between canonical and microcanonical corre-
lation functions allows us to analyze the information content
of the nonlinear response functions shown in Figure 2 using
a stochastic model lacking correlations. In this model we
assume that subsequent collisions of the moving particle
with the scatterers are uncorrelated and that times between
collisions are distributed exponentially with an average
collision time of τ (Poisson process). We furthermore assume
that at each collision the particle’s velocity is randomized
such that all memory of the incoming velocity is lost (strong
collisions). In this case

,
  (28)

for odd order. Thus the only parameter in this model is the
average time between collisions, τ. Response functions up to
11th order are shown in Figure 2 as thin dotted lines for an
average collision time of τ = 0.591 which is the collision

time at ρ = (4/5)ρ0 for a particle with unit speed. The  deviations
 of the response functions 

to  of the Lorentz gas from the corresponding response

functions  to  predicted by the stochastic
model are shown in Figure 3. By construction, the stochastic
model neglects all correlations between subsequent collisions.
Any non-vanishing value of the deviation  must be
therefore attributed to correlated collision sequences. The
signature of such correlated events is clearly visible in higher
order response functions shown in Figure 2. Higher order
response functions should therefore be capable of serving as
sensitive probes for correlated cooperative motion in molecular
systems.
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