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Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are in-
vestigated as an extension of the previous work. Intensive stability analysis is performed for three important
parameterd\q, B andDy, whereNy is the reaction-diffusion number which is a measure of hyperbo[idty,

a measure of reversibility of autocatalytic reactionlni@ a diffusion coefficient of intermediaXe Especial-

ly, the dependence diq of stability exhibits some interesting features, such as hyperbolicity in theNsmall

region and parabolicity in the lard; region. The hyperbolic reaction-diffusion equations are solved numer-
ically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The nu-
merical method gives good accuracy and efficiency even in a stiff region in the case digraadl it can be
extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory,
spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated
to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy pro-
duction changes discontinuously and it shows that different structures of the system have different modes in the
dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy
production in each structure give no important information related for states of system itself.

Introduction tion of diffusion phenomena and its thermodynamic consis-
tency if diffusion fluxes are defined as nonlinear functions of
Reaction-Diffusion systems have been studied extensiveldiffusion forces. Another feature is that the hyperbolic sys-
as a prototype of dissipative structéi€hemical waves and tem has distinct stability characteristics generalized from the
patterns formed by the nonlinear combination of reactiorparabolic one, because one can find new solutions that can-
and diffusion have the common features of pattern formatiomot exist in the parabolic system. The hyperbolic equations
in nature. The evolution equations for chemical waves andive more insight for natural pattern formations with the
patterns are a set of partial differential equations (PDESJuring instability* than the parabolic equations.
composed of reaction and diffusion parts. In describing dif- In this work, stability characteristics and various features
fusion phenomena, Ficks' law has conventionally been usedf solutions which occurrs in the hyperbolic system will be
and it leads to parabolic PDEs. But the parabolic PDEs arexamined in detail. A reversible Brusselator will be used as a
inadequate for describing wave phenomena because thmeaction model, and linear stability analysis will be per-
wave suggested by the parabolic equations propagates farmed to investigate how stability characteristics change as
infinite speed. The features of parabolic equations makéyperbolicity in the diffusion process increases. In some rep-
themselves undesirable to describe wave phenomena. Thesentative regions numerical solutions will be shown.
inadequacy of parabolic equations was pointed out and thEntropy production is another subject studied in the present
replacement of hyperbolic ones was suggested by previougork. Dissipative structures such as chemical oscillations,
researchers. In the previous studlfds was shown that the waves, and stationary geometric patterns maintain their
inadequacy of the parabolic type can be overcomed by thstructures at the cost of the dissipation of energy supplied
hyperbolic one. This work is on an extension of the previougrom the surroundings and the production of entropy. Since
studies. The hyperbolic equation has two main featurethe entropy production is a direct measure of the dissipative
which make it worthwhile using in the description of a reac-process occurring in system, it may give some information
tion-diffusion system. One is that it gives a general and exacbout the modes of dissipative structures. There have been
description of diffusion phenomena. Of course, it is morestudies made to see it the entropy may provide a clue for
difficult to handle hyperbolic equations than parabolic onesgvolutionary principle of structures appearing in a nonequi-
and the former give a fair approximation in general situadibrium state>~° These studies have been focused mainly on
tions. However, the difficulty to solve hyperbolic equations chemically oscillating systems and the common results are
can be compensated by their ability to give an exact descrighat entropy productions of dissipative structures have dif-
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ferent values from those in steady uniform states and show All of parameters are scaled as follows :
discontinuous changes in transition from the steady state to a . .
dissipative structure. Entropy productions for the reaction- 1= k,t, &= r/L, X= %%pxl Y= %%pw
diffusion system will be calculated and compared with pre- 4 4
vious results of the homogeneous system evolving in time. A
spectral method has been used to obtain numerical solutions
for hyperbolic PDEs. It was observed that the spectral
method!-13could be easily adapted to hyperbolic PDEs. The ke Ky ks D%
method is accurate and efficient compared with the conven- 2 = Ok HDD, E=
tional finite difference or finite element method for hyper-
bolic PDEs. Also, it can be extended to a higher dimensional
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system more easily than the conventional methods. o= 1 Ker? Jo Nz KgT/(m,my)2 f= EmY[_)Y%P
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Hyperbolic Reaction-Diffusion Equations
yperbolic reaction-diffusion equations are as follows: Dy v= —, a= ku/k,, B= Ka/k

Tk Lk,

8,c= -0, + A(0), (1a)
wherek; andki(i=1-4) are the forward and reverse rate
03,= ~(pkeT/m)Oc-2 L;J, (1b)  coefficients, and. is the linear dimension of the systebris
] the diffusion coefficient of speciéslefined byD; F¢T/m)/
It is assumed that the fluiglincompressible with no convec- L;, i=XandY.
tion flow and homogeneoirstemperature. Transport of all ~ The focus will be on three parametelgy, B, and Dx
species in this system is due to diffusion only. With thesevhich have considerable physical meaning and critically
assumptions all dissipative processes that occur in the syaffects the stability of the system. TNg is called the reac-
tem are those due to the reactions and the diffusion. Weon-diffusion number, a measure of hyperbolicity of the dif-
denote the mass fraction for spediéy ¢ and the diffusion  fusion process. Thp is the measure of reversibility of the
flux by Ji. TheAi(c) is the reaction rate termm is the mass autocatalytic process; =0, it then corresponds to only for-
of species, is the mass density, ahgl are phenomenologi- ward reaction, and i - it corresponds to the reverse

cal coefficients. reaction in (2c). The value &fx will be selected to give the
The reaction model is the reversible Brusseldtor. desired ratio of the diffusion coefficientsXandY.
A X (2a) Only a contribution of the reaction part to the entropy pro-
B+X% Y+D (2b) duction will be considered because the magnitude of the
2X + Y 3X 2¢) entropy production due to diffusion is very small when com-
X E (2d) pared with one due to the reaction. The rate of entropy pro-

duction per unit volume due to the reaction is given as
In this model it is assumed that the concentration of the reaggllows

tants and product®\( B, D andE) are kept constant, while

intermediqtex an_dY can be changed fr_eely. All processes G, = sz( /\|(+)_/\|(-))1 n( /\|(+)—/\|(')). )
are reversible. Since the fluxes of two intermedidteand :
Jy, are independent variables, the dimension of the system is . i )
four. As the dimensions are larger than three, one can expelfiS eduation can be written as
more interesting results such as chaotic behaviors besides
well-organized dissipative structures. 0= (A-aX)In(A/aX) + (BX-YD)In(BX§ YD
Now the evolution equations for our system are given in + (X*Y=BX*)In(Y/BX) + (X-E)In(X/ E) ®)
scaled form¥%' as follows:
and in scaled form as
%(: -‘;—‘g + A-aX-BX+ YD+ XY_BX°-X+E.  (3a) )
- ok P ~
a_Y: _au +BXCYD - X3Y + BXB, (3b) 0= kBk4q<3D Or. (6a;
ot 9¢
a_LI_ N H:) Q(.,_qu (30) Pchem_ Iordv (6b)
a-l-_ —Vrd XaE ]
v Linear Stability Analysis?
du 0 1
% N+ 1 (3d)

Egs. (3a)-(3d) has a steady state with
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A+E
=== 7 ad ;
ST 1+a (7a) X= Z exp(w,T) PrSIN(TIME), (10a)
~ Xo(B +BX2) o _
Y= —D+X§ (7b) X= Z eXP(0,,T) Gy SiN(TME), (10b)
us= 0, (7¢) u,.= Z exp(w,1)r,CoS(Timg), (10c)
ue= 0, (7d) "
u,= Z exp(wy,T)S,ComE), (10d)
These values correspond to spatially homogeneous solutions
of Egs. (3a)-(3d). The stability of the stationary steady state
is determined by the behavior of small perturbatioandy 0, (13a)
defined b
ened by 90, (13b)
X=X:X (8a)
Y=Yy (8b) =0, (13c)
PQR#®2S> 0 . (13d)

Assuming that the magnitudeoéndy is small, a set of lin-

. X . When all four conditions above are not satisfied, the system
earized equations farandy can be obtained as follows :

will be unstable.
The stability conditions in (13) give rise to a relatiorBof

X T (y+@x+0y ©a) i i
ot o : 0 parameters such 8k, 3, andDx. These stability condi-
ay_ av tipns are established aftBris plotted in ter_ms ofm with
ot e oY (9b)  given parameters. For small valuesByfstationary steady
states are maintained. As some critical concentr8jarf B
%: e 90X _, u (9c) exceeded, the steady state becomes unstable and thus vari-
0t Xog X ous spatially oscillatory or chaotic patterns in solution Eq.
au, dy (9) appear, depending on the conditions (13). There exist
ot o —lyuy (9d)  four critical values oB. The first two values from condi-
tions (13a) and (13b) are larger than those from the third
where (condition (13c)) and fourth (condition (13d)) for all condi-
~ M? » BD-B tions of interest. Thus, the third and fourth critical values,
¢= B+ B? +2M DY+ M2’ which will be denoted aB.s andBe, respectively, are the
) main objects of discussion. Parameter dependence of stabil-
_ M~ _ ity within the limit of N, B, Dx as shown from Figure 1 to 4
6= D+ 2T NraDx: & ¥= NeaDy will be discussed. In the figures, the broken and solid lines

IX:Nrdf, Iy:Nrd/f, M:A+E, )C1+C( .

Using the boundary conditiorsy=0 at{=0 and 1, solutions e

for Eq. (9) can be expected as :
Then the following characteristic equation can be obtained:

WHPwH+Qu?+Rw+S=0, (12) 150

where B 140
P=y+BHpHH (128)

Q=+ B+1) (et ) YO+ bl T2 e TP, (12b) v

120 ¢

REYO(LictHy) +(v+ O+D)lLdy+TE[ex(B+y) +ey(y+ B+ P, (12c)
S=yOIy+TE B i+ (y+ ) gy mP+TTEE YT, (12d)
The conditions for all the roots of the aforementioned equa

tion to have nonpositive real parts are the following condi-

tions due to Lienard-Chipa#t: Figure 1 The stability analysis depending ON.
Dx=0.0016. (Solid lineBs; Broken line:Bgs)

N

rd
B=0.5,
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Figure 2. The stability analysis depending oNq. [3=0.5,
Dx=0.0025. Solid lineBc4; Broken line:B.s)

will correspond toBgz and Be, respectively. Generally
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Figure 4. The stability analysis depending B N=6.0, 3=0.5.
(Solid line:Bcs; Broken line:Bcs)
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chaotic solution appears as expected. But aBgpva which

speaking, aB is increased from the region of stable solutionthere is a nondependence Mf;, a time-periodic pattern
while other parameters are fixed, a chaotic solution appeaigpears. Thus two regions witly dependence oBc. will

at the intersection witB4 critical value while an oscillatory
solution appears on crossifgys. It should be noted that
when crossind.; occurs ahead @4 an oscillatory solution
appears for a short time uri, is reached. However cross-
ing Bu occurs ahead dBs, a chaotic solution is maintained
to even ifBg is crossed.

Stability dependences dyy, @ measure of hyperbolicity,
are shown in Figure 1 and 2. In the figurBg, does not
depend onNyg, but Bes has two distinct dependences.
Approximately as shown in Figure 1 andB4 does not
depend oy in the large value region, while in the small
value region up to some value I8, By increases linearly
on N increments. ThuBg can be located on either below
or aboveBg. In Figure 1, abov8e the chaotic solution is
shown regardless of the relative locationBgaf however, in
the narrow region betweds; andBcs, an oscillatory solu-
tion appears. In contrast, in Figure 2 whBggis aboveBes
in whole range ofNg, a little peculiar pattern is shown.
Above B4 where the linear dependenceMuis shown, the
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B

Figure 3. The stability analysis depending db. Nwq.=6.0,
Dx=0.0016. (Solid lineBcs; Broken line:Bcs)

be distinguished. We will call the region of the non-depen-
dence oriNy the parabolic region and the region of the linear
dependence oNg the hyperbolic region. It may be inter-

preted that aBlq increases to a certain value, the hyperbolic
differential equations effectively become parabolic equations.

@
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Figure 5. The comparison of (a) finite difference method and (b)
spectral method at various scaledB=14.0, Ny=0.1, Dx=0.0016,
[3=0.5.
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Figure 7. The time evolution of entropy production in steady
oscillatory pattern.

8.0

6.0
spectral method in this work with the finite difference
method, calculations were performed in which only the dif-
fusion term is taken into consideration by excluding reaction
parts in Egs. (3a)-(3d). The numerical solutions are obtained

4.0 |

20 for Nig = 0.1; a sharp wave-front because of a relatively large
diffusion velocity was expected. As shown in Figure 5, the
00 L = = — = - spectral method exhibited _a_far t_Jetter solution in sharpness
' ' ' ' and smoothness than the finite difference method (FDM) by
§ the MOLCH routine in IMSL. Especially in the process

Figure 6. The steady oscillatory pattern at the scaled tr#00.  which two wave-fronts meet and propagate in reverse direc-
B=13.0,Ny=6.0,Dx=0.0016.

Dependence oy, a measure of reversibility of (2c), is ’ =803 (a) t=815 (d)
rather simple for botB.; andBcs as shown in Figure 3. They 2 24
linearly depend o with Bgs < Bes, Which means that above
Bes a chaotic solution appears and betwBgnandBcs an X 20 20
oscillatory solution is expected. It is worthwhile to note that \_/
since the range d@ where the steady state is stable increase *

as the reversibility of (2c) increases, there will be no dissipa |, i

tive or chaotic structure in the autocatalytic process in the o~ 2 ° 0 0 0 80 02 e e ew o

limit of completely reversible reactions. 1=809 (b) 1=820 (e)
The stability dependence @ is depicted in Figure 4. As 24 24

Dy increasesBcs is increased whild., is decreased with
much lower slope. Thus, they intersect at a ceRaitn the ~ * *[—————

case of a smaller value D, the stability crossing of tHgs 6 e

occurs ahead d.4, whereas in the case of a larger value of

Dx th_e stability cros:sing cB_C4 occurs ahead dcs. As noted e
previously, a chaotic solution appears on croBindout an 28 28

oscillatory pattern shows up only whBg < B4 in the case T=810 (©) T=827 O

24 24

of smaller values dDy.

X20p—" 2

Numerical Results and Discussion ' ' \/
1.6 1.6

For numerical simulations, spectral metHéd8are modi-
fied and adapted to hyperbolic reaction-diffusion equations % or 55 s 10 02 o s or o
The Fourier collocation method is used to have satisfactor 3 13
solutions for Egs. (3a)-(3d). In computation both accuracy inkjgyre g, The periodic oscillatory pattern at the scaled time (a)
solutions and numerical efficiency are required even wher=g0.3, (a)t=80.9, (c)t=81.0, (d)T=81.5, (d)1=82.0, (a)1=82.7.
stiff solutions occurr in the case of snidd. To compare the B=16.0,N,4=7.5,Dx=0.0025.
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Figure 9. The time evolution of entropy production in periodic Figure 11 The time evolution of entropy production in unstable
oscillatory pattern. chaotic pattern.
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Figure 10. The chaotic pattern at the scaled titw®00.B=16.0, Figure 12 Th.e change of entropy production at transition from
Ni=4.0, Dyx=0.0016. thermodynamic branch to dissipative structure.

tions, the spectral method gives excellent results. It can bexample, a half wave number of patterns can be controlled
concluded then that the spectral method expresses itself fay changingDyx. Figure 7 shows the time evolution of
better even for very stiff solutions in space. Furthermoregntropy production corresponding to this pattern. After some
with numerical efficiency with the same mesh size, the spediuctuations the entropy production converges to a stable
tral method consumes less than half the time compared wittalue. The spatio-temporally oscillatory solutions appear in
the FDM and the incremental rate of computation time witha rather peculiar set of parameters shown in Figure 2 which
the expansion of mesh size is far lower with the spectrails expressed as time-periodic. It looks like a vertically oscil-
method. This will lead to a crucial advantage in extendindating rope seen transversally. In this situation a pattern con-
the method to a case of a higher dimension in space. trol is not possible, and only one pattern with a half wave
Four types of solutions, spatially homogeneous, spatialljpumber can exist. In Figure 9 the entropy production evolves
oscillatory (Fig. 6), spatiotemporally oscillatory (Fig. 8) and periodically in time. Lastly, as the value of B increases up to
chaotic (Fig. 10), have been obtained. Entropy productionshe chaotic region, the chaotic pattern or chemical turbu-
are also calculated to get some clues for the dissipative préence occurs as depicted in Figure 10. The chaotic pattern
cess occurring in the system, specifically to investigate hovdoes not appear instantly from the initial condition near the
it changes in the course of a pattern formation. The spatiallpifurcation point; it's very slow to appear. But in the range
homogeneous solutions can be obtained for parameter sedsfficiently far fromBc, it appears without delay. As shown
of steady regions such as indicated in Figure 1-4. As showim Figure 11 the entropy production seems to evolve with a
in Figure 6 the spatially oscillatory solution exhibits a stableperiodical pattern in induction period, but after some time to
pattern for parameter sets of oscillatory regions as pointed ifluctuate disorderly.
Figure 1-4 after an adequate amount of time. The pattern canThe variation of entropy production with regardBads
be selected by setting suitable values for parameters. Foalculated to investigate how it changes when the state of the
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system changes. Figure 12 shows that entropy productioentropy production is a direct measure of the dissipative pro-
changes discontinuously at the bifurcation point. It meangess occurring in a system, it is calculated in various states,
that two states have different modes of energy dissipation tand it seems to reflect the mode of dissipation in a system. In
maintain their structures. In the dissipative structure the sysa transitional state the entropy production shows a discontin-
tem has a lower entropy production value than a homogaious change and it originates from two different states which
neous structure. But it cannot be definitely stated thahave different modes of energy dissipation. But it does not
dissipative structures have a lower entropy production thagive any direction to the evolution of a system, and its only
homogeneous steady states for general cases. It appears thatth seems to be as a measure of the dissipation process

the value of entropy production itself does not give anyunder consideration.

information about the determination of states. The transition Acknowledgement This work was supported by Special
is second order, but there is something uncertain to concludgasic Research from KOSEF (95-05-00-15) and Academic
about the transition to a dissipative structure in a reactionResearch Fund from Yonsei University. (93-109).

diffusion system is second-order because the variation of
entropy production is small in its scale. But when calculated
in a two dimensional system, it becomes certain. On the
other hand, in the case of a transition to a chaotic state thel.
system has a higher value of entropy production than a
homogeneous one, and an abrupt change of entropy produc?-
tion is found at the transition point between two states. It 3.
seems that the system consumes more energy to maintain thf
homogeneous state than the dissipative structure. '
To describe real chemical wave phenomena and to get
more exact definition of diffusion fluxes, hyperbolic equa- 6:
tions are required. As mentioned earlier, it has already beeny
shown that the hyperbolic system has very different stability g.
characteristics from the parabolic system. When it is investi- 9.
gated how the stability depends on hyperbolicity, there aréO.
two regions having different stability characteristics, namely
hyperbolic and parabolic regions. In the hyperbolic regionl1.
the range in which dissipative structures occur is harrow and
chaotic states appear in a wide range. In the parabolic regio
chaotic states may or may not occur depending on the Cond]r- '
tions of the system such as diffusion coefficients. It is
remarkable that chaotic structures occur in a wide range ofg
parameters and may be general p itib=
rium. It appears that it is a necessary balance between forag.
and flux for the dissipative structure to emerge, and when
the balance breaks down, two extreme structures, such as a
homogeneous or chaotic pattern may appear. Since tHeb.
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