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Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are in-
vestigated as an extension of the previous work. Intensive stability analysis is performed for three important
parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is
a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especial-
ly, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd

region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numer-
ically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The nu-
merical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be
extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory,
spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated
to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy pro-
duction changes discontinuously and it shows that different structures of the system have different modes in the
dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy
production in each structure give no important information related for states of system itself.
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Introduction

Reaction-Diffusion systems have been studied extensively
as a prototype of dissipative structure.1 Chemical waves and
patterns formed by the nonlinear combination of reaction
and diffusion have the common features of pattern formation
in nature. The evolution equations for chemical waves and
patterns are a set of partial differential equations (PDEs)
composed of reaction and diffusion parts. In describing dif-
fusion phenomena, Ficks' law has conventionally been used,
and it leads to parabolic PDEs. But the parabolic PDEs are
inadequate for describing wave phenomena because the
wave suggested by the parabolic equations propagates in
infinite speed. The features of parabolic equations make
themselves undesirable to describe wave phenomena. The
inadequacy of parabolic equations was pointed out and the
replacement of hyperbolic ones was suggested by previous
researchers. In the previous studies2,3 it was shown that the
inadequacy of the parabolic type can be overcomed by the
hyperbolic one. This work is on an extension of the previous
studies. The hyperbolic equation has two main features
which make it worthwhile using in the description of a reac-
tion-diffusion system. One is that it gives a general and exact
description of diffusion phenomena. Of course, it is more
difficult to handle hyperbolic equations than parabolic ones,
and the former give a fair approximation in general situa-
tions. However, the difficulty to solve hyperbolic equations
can be compensated by their ability to give an exact descrip-

tion of diffusion phenomena and its thermodynamic cons
tency if diffusion fluxes are defined as nonlinear functions
diffusion forces. Another feature is that the hyperbolic sy
tem has distinct stability characteristics generalized from 
parabolic one, because one can find new solutions that 
not exist in the parabolic system. The hyperbolic equatio
give more insight for natural pattern formations with th
Turing instability4 than the parabolic equations.

In this work, stability characteristics and various featur
of solutions which occurrs in the hyperbolic system will b
examined in detail. A reversible Brusselator will be used a
reaction model, and linear stability analysis will be pe
formed to investigate how stability characteristics change
hyperbolicity in the diffusion process increases. In some r
resentative regions numerical solutions will be show
Entropy production is another subject studied in the pres
work. Dissipative structures such as chemical oscillatio
waves, and stationary geometric patterns maintain th
structures at the cost of the dissipation of energy supp
from the surroundings and the production of entropy. Sin
the entropy production is a direct measure of the dissipa
process occurring in system, it may give some informat
about the modes of dissipative structures. There have b
studies made to see it the entropy may provide a clue
evolutionary principle of structures appearing in a noneq
librium state.5~10 These studies have been focused mainly
chemically oscillating systems and the common results 
that entropy productions of dissipative structures have 
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ferent values from those in steady uniform states and show
discontinuous changes in transition from the steady state to a
dissipative structure. Entropy productions for the reaction-
diffusion system will be calculated and compared with pre-
vious results of the homogeneous system evolving in time. A
spectral method has been used to obtain numerical solutions
for hyperbolic PDEs. It was observed that the spectral
method11~13 could be easily adapted to hyperbolic PDEs. The
method is accurate and efficient compared with the conven-
tional finite difference or finite element method for hyper-
bolic PDEs. Also, it can be extended to a higher dimensional
system more easily than the conventional methods.

Hyperbolic Reaction-Diffusion Equations

The hyperbolic reaction-diffusion equations are as follows:

It is assumed that the fluid is incompressible with no convec-
tion flow and homogeneous in temperature. Transport of all
species in this system is due to diffusion only. With these
assumptions all dissipative processes that occur in the sys-
tem are those due to the reactions and the diffusion. We
denote the mass fraction for species i by ci and the diffusion
flux by Ji. The ΛΛΛΛi(c) is the reaction rate term, mi is the mass
of species i, is the mass density, and Lij are phenomenologi-
cal coefficients.

The reaction model is the reversible Brusselator.14

                                   A ↔ X  (2a)
                            B + X ↔  Y + D (2b)
                          2X + Y ↔ 3X (2c)
                                   X ↔ E (2d)

In this model it is assumed that the concentration of the reac-
tants and products (A, B, D and E) are kept constant, while
intermediate, X and Y can be changed freely. All processes
are reversible. Since the fluxes of two intermediate, JX and
JY, are independent variables, the dimension of the system is
four. As the dimensions are larger than three, one can expect
more interesting results such as chaotic behaviors besides
well-organized dissipative structures.

Now the evolution equations for our system are given in
scaled forms14 as follows:

All of parameters are scaled as follows :

where ki and k-i(i=1-4) are the forward and reverse ra
coefficients, and L is the linear dimension of the system.����is
the diffusion coefficient of species i defined by      =(kBT/mi)/
Lij, i=X and Y.

The focus will be on three parameters, Nrd, β, and DX

which have considerable physical meaning and critica
affects the stability of the system. The Nrd is called the reac-
tion-diffusion number, a measure of hyperbolicity of the d
fusion process. The β is the measure of reversibility of the
autocatalytic process; if β=0, it then corresponds to only for
ward reaction, and if β→∞ it corresponds to the revers
reaction in (2c). The value of DX will be selected to give the
desired ratio of the diffusion coefficients of X and Y.

Only a contribution of the reaction part to the entropy pr
duction will be considered because the magnitude of 
entropy production due to diffusion is very small when com
pared with one due to the reaction. The rate of entropy p
duction per unit volume due to the reaction is given 
follows

This equation can be written as

and in scaled form as

Linear Stability Analysis2

Eqs. (3a)-(3d) has a steady state with
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These values correspond to spatially homogeneous solutions
of Eqs. (3a)-(3d). The stability of the stationary steady state
is determined by the behavior of small perturbation, x and y
defined by

                                    x=X-Xs , (8a)
                                    y=Y-Ys . (8b)

Assuming that the magnitude of x and y is small, a set of lin-
earized equations for x and y can be obtained as follows :

where

lx=Nrdf, ly=Nrd/f, M=A+E, γ=1+α .

Using the boundary conditions x=y=0 at ξ=0 and 1, solutions
for Eq. (9) can be expected as :
Then the following characteristic equation can be obtained:

                           ω4+Pω3+Qω2+Rω+S=0, (11) 

where

P=γ+θ+ψ+lx+l y, (12a)

Q=(γ+θ+ψ)(lx+ly)+γθ+lxly+π2(εx+εy)m2, (12b)

R=γθ(lx+ly)+(γ+θ+ψ)lxly+π2[εx(θ+ly)+εy(γ+θ+lx)]m2, (12c)

S=γθlxly+π2[θεxlx+(γ+ψ)εyly]m2+π4εxεym4, (12d)

The conditions for all the roots of the aforementioned equa-
tion to have nonpositive real parts are the following condi-
tions due to Lienard-Chipart15 :

                                          P > 0 , (13a)

                                          Q > 0 , (13b)

                                          S > 0 , (13c)

                                PQR-R2-P2S > 0 . (13d) 

When all four conditions above are not satisfied, the syst
will be unstable. 

The stability conditions in (13) give rise to a relation of B
to parameters such as Nrd, β, and DX. These stability condi-
tions are established after B is plotted in terms of m with
given parameters. For small values of B, stationary steady
states are maintained. As some critical concentration Bc of B
exceeded, the steady state becomes unstable and thus
ous spatially oscillatory or chaotic patterns in solution E
(9) appear, depending on the conditions (13). There e
four critical values of B. The first two values from condi-
tions (13a) and (13b) are larger than those from the th
(condition (13c)) and fourth (condition (13d)) for all cond
tions of interest. Thus, the third and fourth critical value
which will be denoted as Bc3 and Bc4, respectively, are the
main objects of discussion. Parameter dependence of st
ity within the limit of Nrd, β, Dx as shown from Figure 1 to 4
will be discussed. In the figures, the broken and solid lin
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Figure 1. The stability analysis depending on Nrd. β=0.5,
DX=0.0016. (Solid line: Bc4; Broken line: Bc3)
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will correspond to Bc3 and Bc4, respectively. Generally
speaking, as B is increased from the region of stable solution
while other parameters are fixed, a chaotic solution appears
at the intersection with Bc4 critical value while an oscillatory
solution appears on crossing Bc3. It should be noted that
when crossing Bc3 occurs ahead of Bc4 an oscillatory solution
appears for a short time until Bc4 is reached. However cross-
ing Bc4 occurs ahead of Bc3, a chaotic solution is maintained
to even if Bc3 is crossed.

Stability dependences on Nrd, a measure of hyperbolicity,
are shown in Figure 1 and 2. In the figures, Bc3 does not
depend on Nrd, but Bc4 has two distinct dependences.
Approximately as shown in Figure 1 and 2, Bc4 does not
depend on Nrd in the large value region, while in the small
value region up to some value of Nrd, Bc4 increases linearly
on Nrd increments. Thus Bc3 can be located on either below
or above Bc4. In Figure 1, above Bc4 the chaotic solution is
shown regardless of the relative locations of Bc3; however, in
the narrow region between Bc3 and Bc4, an oscillatory solu-
tion appears. In contrast, in Figure 2 where Bc3 is above Bc4

in whole range of Nrd, a little peculiar pattern is shown.
Above Bc4 where the linear dependence on Nrd is shown, the

chaotic solution appears as expected. But above Bc4 in which
there is a nondependence of Nrd, a time-periodic pattern
appears. Thus two regions with Nrd dependence on Bc4 will
be distinguished. We will call the region of the non-depe
dence on Nrd the parabolic region and the region of the line
dependence on Nrd the hyperbolic region. It may be inter
preted that as Nrd increases to a certain value, the hyperbo
differential equations effectively become parabolic equatio

Figure 2. The stability analysis depending on Nrd. β=0.5,
DX=0.0025. Solid line: Bc4; Broken line: Bc3)

Figure 3. The stability analysis depending on β. Nrd.=6.0,
DX=0.0016. (Solid line: Bc4; Broken line: Bc3)

Figure 4. The stability analysis depending on DX. Nrd=6.0, β=0.5.
(Solid line: Bc4; Broken line: Bc3)

Figure 5. The comparison of (a) finite difference method and 
spectral method at various scaled τ. B=14.0, Nrd=0.1, DX=0.0016,
β=0.5.
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Dependence on β, a measure of reversibility of (2c), is
rather simple for both Bc3 and Bc4 as shown in Figure 3. They
linearly depend on β with Bc3 < Bc4, which means that above
Bc4 a chaotic solution appears and between Bc3 and Bc4 an
oscillatory solution is expected. It is worthwhile to note that
since the range of B where the steady state is stable increases
as the reversibility of (2c) increases, there will be no dissipa-
tive or chaotic structure in the autocatalytic process in the
limit of completely reversible reactions.

The stability dependence on Dx is depicted in Figure 4. As
Dx increases, Bc3 is increased while Bc4 is decreased with
much lower slope. Thus, they intersect at a certain Dx. In the
case of a smaller value of Dx, the stability crossing of the Bc3

occurs ahead of Bc4, whereas in the case of a larger value of
Dx the stability crossing of Bc4 occurs ahead of Bc3. As noted
previously, a chaotic solution appears on crossing Bc4, but an
oscillatory pattern shows up only when Bc3 < Bc4 in the case
of smaller values of Dx.

Numerical Results and Discussion

For numerical simulations, spectral methods11~13 are modi-
fied and adapted to hyperbolic reaction-diffusion equations.
The Fourier collocation method is used to have satisfactory
solutions for Eqs. (3a)-(3d). In computation both accuracy in
solutions and numerical efficiency are required even when
stiff solutions occurr in the case of small Nrd. To compare the

spectral method in this work with the finite differenc
method, calculations were performed in which only the d
fusion term is taken into consideration by excluding react
parts in Eqs. (3a)-(3d). The numerical solutions are obtai
for Nrd = 0.1; a sharp wave-front because of a relatively la
diffusion velocity was expected. As shown in Figure 5, t
spectral method exhibited a far better solution in sharpn
and smoothness than the finite difference method (FDM)
the MOLCH routine in IMSL. Especially in the proces
which two wave-fronts meet and propagate in reverse dirFigure 6. The steady oscillatory pattern at the scaled time τ=1000.

B=13.0, Nrd=6.0, DX=0.0016.

Figure 7. The time evolution of entropy production in stead
oscillatory pattern.

Figure 8. The periodic oscillatory pattern at the scaled time (
τ=80.3, (a) τ=80.9, (c) τ=81.0, (d) τ=81.5, (d) τ=82.0, (a) τ=82.7.
B=16.0, Nrd=7.5, DX=0.0025.
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tions, the spectral method gives excellent results. It can be
concluded then that the spectral method expresses itself far
better even for very stiff solutions in space. Furthermore,
with numerical efficiency with the same mesh size, the spec-
tral method consumes less than half the time compared with
the FDM and the incremental rate of computation time with
the expansion of mesh size is far lower with the spectral
method. This will lead to a crucial advantage in extending
the method to a case of a higher dimension in space. 

 Four types of solutions, spatially homogeneous, spatially
oscillatory (Fig. 6), spatiotemporally oscillatory (Fig. 8) and
chaotic (Fig. 10), have been obtained. Entropy productions
are also calculated to get some clues for the dissipative pro-
cess occurring in the system, specifically to investigate how
it changes in the course of a pattern formation. The spatially
homogeneous solutions can be obtained for parameter sets
of steady regions such as indicated in Figure 1-4. As shown
in Figure 6 the spatially oscillatory solution exhibits a stable
pattern for parameter sets of oscillatory regions as pointed in
Figure 1-4 after an adequate amount of time. The pattern can
be selected by setting suitable values for parameters. For

example, a half wave number of patterns can be contro
by changing Dx. Figure 7 shows the time evolution o
entropy production corresponding to this pattern. After so
fluctuations the entropy production converges to a sta
value. The spatio-temporally oscillatory solutions appear
a rather peculiar set of parameters shown in Figure 2 wh
is expressed as time-periodic. It looks like a vertically osc
lating rope seen transversally. In this situation a pattern c
trol is not possible, and only one pattern with a half wa
number can exist. In Figure 9 the entropy production evol
periodically in time. Lastly, as the value of B increases up
the chaotic region, the chaotic pattern or chemical tur
lence occurs as depicted in Figure 10. The chaotic pat
does not appear instantly from the initial condition near 
bifurcation point; it's very slow to appear. But in the ran
sufficiently far from Bc4 it appears without delay. As shown
in Figure 11 the entropy production seems to evolve wit
periodical pattern in induction period, but after some time
fluctuate disorderly.

The variation of entropy production with regard to B is
calculated to investigate how it changes when the state o

Figure 9. The time evolution of entropy production in periodic
oscillatory pattern.

Figure 10. The chaotic pattern at the scaled time τ=500. B=16.0,
Nrd=4.0, DX=0.0016.

Figure 11. The time evolution of entropy production in unstab
chaotic pattern.

Figure 12. The change of entropy production at transition fro
thermodynamic branch to dissipative structure.
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system changes. Figure 12 shows that entropy production
changes discontinuously at the bifurcation point. It means
that two states have different modes of energy dissipation to
maintain their structures. In the dissipative structure the sys-
tem has a lower entropy production value than a homoge-
neous structure. But it cannot be definitely stated that
dissipative structures have a lower entropy production than
homogeneous steady states for general cases. It appears that
the value of entropy production itself does not give any
information about the determination of states. The transition
is second order, but there is something uncertain to conclude
about the transition to a dissipative structure in a reaction-
diffusion system is second-order because the variation of
entropy production is small in its scale. But when calculated
in a two dimensional system, it becomes certain. On the
other hand, in the case of a transition to a chaotic state the
system has a higher value of entropy production than a
homogeneous one, and an abrupt change of entropy produc-
tion is found at the transition point between two states. It
seems that the system consumes more energy to maintain the
homogeneous state than the dissipative structure.

To describe real chemical wave phenomena and to get a
more exact definition of diffusion fluxes, hyperbolic equa-
tions are required. As mentioned earlier, it has already been
shown that the hyperbolic system has very different stability
characteristics from the parabolic system. When it is investi-
gated how the stability depends on hyperbolicity, there are
two regions having different stability characteristics, namely
hyperbolic and parabolic regions. In the hyperbolic region
the range in which dissipative structures occur is narrow and
chaotic states appear in a wide range. In the parabolic region
chaotic states may or may not occur depending on the condi-
tions of the system such as diffusion coefficients. It is
remarkable that chaotic structures occur in a wide range of
parameters and may be general phenomena far from equilib-
rium. It appears that it is a necessary balance between force
and flux for the dissipative structure to emerge, and when
the balance breaks down, two extreme structures, such as a
homogeneous or chaotic pattern may appear. Since the

entropy production is a direct measure of the dissipative p
cess occurring in a system, it is calculated in various sta
and it seems to reflect the mode of dissipation in a system
a transitional state the entropy production shows a discon
uous change and it originates from two different states wh
have different modes of energy dissipation. But it does 
give any direction to the evolution of a system, and its o
worth seems to be as a measure of the dissipation pro
under consideration.
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