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Dissipative particle dynamics simulations of bead-spring dumbbell models under microchannel flow were

performed and the effects of the deformation on their migration behavior were discussed. Dumbbells were

found to migrate toward the walls or the channel center depending on the stiffness. Stiff dumbbells migrated

toward the walls. In any cases, the dumbbells were found to have a stronger tendency to move toward the

channel center in more deformable conditions.
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Introduction

Polymer migration under microchannel flow has been

paid much attention due to an important implication in

polymer engineering such as novel separation and molecular

weight fractionation techniques.1-11 For example, polymers

in solution migrate away from solid walls. This migration

with respect to the flowing solvent particles leads to the

formation of a depletion layer near the walls. Since the

depletion layer results in higher flow rates near the walls, it

would affect rheological properties of the polymer solution.

This is practically important for designing microfluidic

devices12 such as lab-on-a chip and microneedle. 

Theoretically, continuum mechanics13 could be first candi-

date to study polymers under microchannel flow. However,

the validity of the continuum mechanic generally does not

hold for polymer solution under microchannel flow. The size

of a typical microchannel is an order of micrometer and

comparable to the length of polymer, for instance, DNA.

Note that the uncoiled length of a λ–DNA is about 22 μm14

to 32.8 μm.15 Therefore, Knudsen number is close to 1. As is

well known, when the Knudsen number is much less than 1,

the polymer solution can be treated as continuum and

continuum mechanics can be employed. However, when the

Knudsen number is close to 1, the polymer solution may not

be handled by the continuum mechanics. This is largely

because polymer deformation may have significant effects

on the microchannel flow. 

Computer simulation such as molecular dynamics (MD)

simulation,16 Brownian dynamics (BD) simulation,16 dissi-

pative particle dynamics (DPD) simulation,17-20 and lattice-

Boltzmann (LB) simulation21-23 can handle the effects, at

least, in a coarse-grained level. In this sense, computer

simulation is a good candidate as an alternative to the

continuum mechanics. Molecular dynamics simulation is

most accurate and promising, but computationally intensive

for the mesoscopic scale problems and challenging even

with the current state-of-art parallel computers. Due to high

computational cost of MD simulation, relatively cheap

mesoscale techniques such as DPD simulation, BD simu-

lation, and LB simulation have been widely used for the

mesoscale problems. 

Unlike BD simulation and LB simulation, the gas-like

nature of Schmidt number from DPD simulation has been

criticized for polymer simulation24-34 under flow since

hydrodynamic interactions could be still developing on the

time scale of polymer motion.19 Lowe proposed that the

thermostat itself has a viscosity and this fact offers a solution

to the problem.20 If the missing viscosity can be replaced by

the thermostat contribution to the viscosity, then liquid-like

dynamics can be recovered. In addition to the methodo-

logical attempt, recent DPD studies, even using the conven-

tional scheme, suggested that the concerns are not well

established and DPD simulation is effective in simulating

polymer flow in a variety of situations including in nano-

channels.11,34 

The purpose of this study is to perform DPD simulations

using simple bead-spring dumbbell models and investigate

the effects of the dumbbell deformation on their migration

behavior under the microchannel flow. 

Dissipative Particle Dynamics Simulation

The equations of motion for DPD particles are given by 

 (1)

 (2)

where 
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The dissipative or drag force is related to the velocity

difference between the particles and acts as a resistance

against motion. It is given by

dri

dt
------- = vi

dvi

dt
------- = 

f i

mi

-----

f i =  
j i≠

∑ Fi j

C
 + Fij

D
 + Fi j

R



Polymer Migration under Microchannel Flow  Bull. Korean Chem. Soc. 2007, Vol. 28, No. 12     2427

,  (4)

where , , and γ

is a friction or drag factor. The random force introduces a

Brownian-like, chaotic character of particles and is given by

,  (5)

where σ defines the fluctuation amplitude and ζij is a random

number drawn from a uniform distribution with zero mean

and Δt−1 variance where Δt is the integration time step. From

the fluctuation-dissipation theorem, σ = 2kBTγ and ωD(rij) =

[ωR(rij)]
2. The conservative force is a soft repulsive force

representing the effective potential between the groups of

fluid molecules assembled in the different DPD particles.

The expression is given by

 (6)

where aij is the maximum repulsion between a pair of

particles.

Finally, the weighting function is given by

 (7)

for rij < rc. Otherwise, it is zero. In this study, rc was set to 1.

For DPD particles, we set aij = 18.75 if i and j are fluid

particles or beads in polymer. For wall particles, we set awall

= 5.0 and use a mixing rule  to give aij = 9.68

when calculating the interaction between fluid and wall

particles.

We used two bead-spring dumbbell models. One is finitely

extendable nonlinear elastic (FENE)35,36 dumbbell model

and the other is Hookean dumbbell model. FENE model has

been found to capture most of the important nonlinear

rheological properties of polymer and has been commonly

used in rheology. In FENE model, the potential energy

between bead i and bead j is given by

 (8)

if rij < R0 where k is spring constant and R0 is finite extended

length. Otherwise, it is infinity. Here R0 was set to 3.0. In

Hookean model, the potential energy is given by

 (9)

If Hookean and FENE dumbbells have the same spring

constant, there should be little or no difference in the

behavior of two models at small elongations. 

In addition to the conservative forces, we also applied

constant external field in x-direction  to generate

Poiseuille flow. 

We used Lowe’s scheme20 to integrate DPD equations of

motion. The integration procedure is as follows. Newton’s

equations of motion are first integrated over a time step Δt

using velocity Verlet algorithm.37 For each particle, with a

probability ΓΔt, where Γ is a bath collision frequency, the

velocity is exchanged for a new velocity drawn from a

Maxwell-Boltzmann distribution. According to a thorough

comparison of integration schemes specifically designed for

DPD simulations, Lowe’s method was found to be a

promising candidate.38 The no-slip boundary condition was

applied using the frozen wall particle method by Fan et al.4

Our system is composed of total 55440 particles (45000

fluid particles, 2700 dumbbells, and 5040 wall particles) in

the simulation box with dimension 60 × 7 × 30.5. Initially

positions of all particles are drawn from the lattice sites of

the face-centered-cubic lattice of density 4. Three layers of

the lattice plane are used for wall particles, which are frozen

in all simulations presented here. Therefore, 5040 wall

particles are located in three layers parallel to the (x, y) plane

in each side. Here we located two inner layers at z = 15.25.

Periodic boundary conditions are applied along x and y

directions. In this study, Δt was set to 0.02. We ran total for t

= 12000-16000 and averaged sampling data from t = 2000-

4000. All simulations were performed using a general

purpose molecular dynamics simulation program.39 

All units will be given in reduced units otherwise speci-

fied. The mass of particle, m, cutoff distance, rc, and kBT are

set to unity 

Results and Discussion 

Figure 1 shows fully developed velocity profile from

Hookean dumbbell model with k = 6 at Γ = 20. To quantify

the velocity profile, it was fitted with the function obtained

by assuming power-law fluid, 

,  (10)

where h (=15.25) is the channel half-width. When n = 1, the

power-law fluid equation describes Newtonian fluid. When

n < 1, it describes a generalized Newtonian fluid with shear-

thinning. On the other hand, when n > 1, it describes a
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Figure 1. Fully developed velocity profile from Hookean dumbbell
model with k = 6 and Γ = 20. The fitted power-law function is also
shown. 
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generalized Newtonian fluid with shear-thickening. In the

figure, we included the fitted function to illustrate that we

obtained very good fit overall. For other model systems in

this study, which are not shown in the figure, we also

obtained very good fit. The fitted values of n and vmax are

shown in Table 1. From the table, we can see that the

velocity profile is insensitive to the stiffness (i.e., spring

constant in the present case). Both n and vmax increases as the

stiffness increases. However, the increase is small. On the

other hand, the effect of the bath collision frequency on the

velocity profile is quite large. First, n is much less than 1,

which indicates that the fluid shows shear-thinning behavior.

Second, vmax is about three times larger. The fluid at lower

bath collision frequency is less resistant to the flow.

Figure 2 shows the center-of-mass density profile from

each model. Here the density profile at g = 0.0 was sub-

tracted from each density profile. Therefore positive values

at a certain region in the density profile indicate that

dumbbells migrated to the region in the presence of a flow.

As can be seen from Figure 2, the FENE dumbbells with k =

9 are more populated near the walls. On the other hand, the

dumbbells with k = 3 are more populated at the center

region. At k = 6, we observe an intermediate distribution,

that is to say, two off-center peaks located between the

center and the walls. Thus dumbbells show different

migration behavior depending on the stiffness. Hookean

dumbbell model with the same spring constant as FENE

dumbbell model shows the populated region that is shifted

toward the walls. The density profile of Hookean dumbbells

with k = 6 was rather similar to the one of FENE dumbbell

with k = 9. The bath collision frequency leads to the

populated region shifted toward the channel center. Similar

behavior was obtained by using higher field strength. 

For wide channel (2h/Rg > 5), LB simulation data showed

that polymer chains migrated toward the channel center in a

pressure driven flow. In sufficiently narrow channels, there

was a reversal of direction and the polymers moved toward

the wall.9 Similar behavior was also observed in DPD

simulation.11 For relatively long chains, as compared to the

channel width, a migration toward the walls was observed.

However, for relatively short chains, a migration away from

the walls was observed. The present system has very large

ratio of the channel width to the polymer size as shown in

Table 1. The ratio of the volume fraction to the overlap

volume fraction φ/φ* is also small (see Table 1). Therefore

the confining effects are small. Even for this case, we

observed the migration of dumbbells toward either the

channel center or the walls depending on the stiffness. This

observation is different from the previous results. However

the populated region was shifted toward the channel center

as the stiffness decreases (Peclet number increases). 

In this study, two bath collision frequencies were ex-

amined. One is Γ = 2 and the other is Γ = 20. Since Schmidt

number from DPD simulation using Lowe’s scheme is

approximately given20 by the formula ,

which is verified to be true for values satisfying

,31 Γ = 2 and 20 correspond to Sc ~4 and 400,

respectively. At higher bath collision frequency, the popu-

lated region was shifted toward the channel center as shown

in Figure 2(c). However, Figure 2(a) suggests different

migration behavior even at similar Schmidt numbers. This

indicates that Schmidt number alone may not be sufficient to

describe the migration behavior. The migration behavior was

rather more correlated with Peclet number. 

Figure 3 shows the stretch profiles under the channel flow.

Here the stretch X is defined as X = Xmax − Xmin where Xmax

S
c
 = v/D~Γ

2
/k

B
T

0 ΓΔt 0.5≤ ≤

Table 1. Simulation and model parameter, the fitted values of n and
vmax in the power-law fluid equation, the ratio of the radius of
gyration to the channel half-width h, the ratio of the volume
fraction to the overlap volume fraction, and the Peclet number from
each simulation

Model g Γ K n vmax φ/φ∗ a
h/Rg Pe

b

FENE 0.2 20 3 1.005 6.078 0.138 32.585 12.551

FENE 0.2 20 6 1.024 6.138 0.0708 40.667 11.384

FENE 0.02 20 6 1.023 0.611 0.0708 40.667 1.133

FENE 0.6 20 6 0.989 18.919 0.0708 40.667 35.682

FENE 0.2 20 9 1.032 6.167 0.0437 47.806 6.228

Hookean 0.2 20 6 1.034 6.183 0.0337 52.048 5.304

FENE 0.2 2 3 0.581 18.128 0.153 31.447 5.735

aThe overlap volume faction φ* is given by φ* = N/4πRg
3ρ/3 where N is

the number of beads, ρ is density, and Rg is the radius of gyration. bPe =
 where the wall shear rate  is given by  = (n + 1/nh) νmax.

The radius of gyration and the diffusion constant D were obtained from
free-solution simulation.

γ·
W

Rg

2
γ·
W

γ·
W

Figure 2. Center-of-mass density profiles from (a) FENE dumbbell
models with k = 3, 6, and 9 at Γ = 20, (b) FENE and Hookean
dumbbell models with k = 6 at Γ = 20, (c) FENE models with k = 3
at Γ = 2 and 20, (d) FENE models with k = 6 at Γ = 20 under g =
0.02, 0.2, and 0.6. Here the corresponding density profile at g = 0.0
was subtracted from each density profile.
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and Xmin are maximum and minimum coordinate in x-

direction (flow direction) among coordinates of all particles

in a polymer, respectively. To compare the stretch with the

dumbbell size, we divided the stretch by the radius of

gyration in free solution. Under the flow, the strain rate is

higher near the walls and zero in the channel center.

Therefore the stretch is larger near the walls while it is close

to the radius of gyration in the channel center, as can be seen

in Figure 3. Similar trends are also observed in the angle

between the end-to-end vector and the flow direction (see

Figure 4). Note that 1 and 0.5 indicate perfect alignment

along the flow direction and free rotation, respectively. The

dumbbells rotate freely in the channel center (zero strain rate

region). As the dumbbells approach the walls (highest strain

rate region), the dumbbells align along the flow direction. In

all cases, less stiff dumbbells were subject to more defor-

mation and stronger alignment along the flow direction.

Here a dumbbell is less stiff when force constant is smaller,

the non-linearity is included in the model, or higher bath

collision frequency is used. 

Thus, the present results suggest that dumbbells has

stronger tendency to migrate toward the channel center in

more deformable conditions. This may imply that rigid poly-

mer would migrate toward the walls. Previous theoretical

studies2,3 using rigid polymer model also proposed that a

rigid rod polymer shows a net migration away from the

channel center and toward the walls. However those studies

considered only the mobility gradient due to the rotational

anisotropy. Hydrodynamic interactions and steric effects

were not considered. 

There is the mechanistic view that polymers should tend to

migrate toward regions of the flow where their confor-

mational state is least restricted. According to the view, we

should observe only migration toward the channel center.

Therefore our observations are not explained simply by the

mechanistic view and confirm other previous studies.6,9,11 

Conclusion

We presented DPD simulation results using bead-spring

dumbbell models under microchannel flow. One is FENE

dumbbell model and the other is Hookean dumbbell model.

In particular, we focused on investigating the effects of

dumbbell deformation on their migration behavior. Here we

changed the stiffness condition by changing simulation (bath

collision frequency) or model parameters (spring constant,

non-linearity).

In this study, the ratio of the channel width to the polymer

size was large and the ratio of the volume fraction to the

overlap volume fraction was small. Consequently the con-

fining effects are small. We found that the dumbbells

migrated toward either the channel center or the walls

depending on the stiffness. More stiff dumbbells tended to

migrate toward the walls. In any cases, when the dumbbells

are subject to more deformable conditions, which result in

higher Peclet number, the populated region tends to shift

toward the channel center. 

Figure 3. Stretch profiles from (a) FENE dumbbell models with k
= 3, 6, and 9 at Γ = 20, (b) FENE and Hookean dumbbell models
with k = 6 at Γ = 20, (c) FENE models with k = 3 at Γ = 2 and 20,
(d) FENE models with k = 6 at Γ = 20 under g = 0.02, 0.2, and 0.6. 

Figure 4. Cosine profiles of the angle between the end-to-end
vector and the flow direction from (a) FENE dumbbell models with
k = 3, 6, and 9 at Γ = 20, (b) FENE and Hookean dumbbell models
with k = 6 at Γ = 20, (c) FENE models with k = 3 at Γ = 2 and 20
(d) FENE models with k = 6 at Γ = 20 under g = 0.02, 0.2, and 0.6. 
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