Synthetic Studies on Tedanolide: Stereoselective Synthesis of the C1-C7 Fragment

Se Hwan Park and Hyo Won Lee*

Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea. *E-mail: hwnlee@chungbuk.ac.kr Received June 4, 2008

Key Words : Tedanolide, Macrolide, Crotylation, Mitsunobu reaction

Tedanolide (1), an 18-membered macrolide, was isolated by Schmitz *et al.*^{1a} in 1984 from the Caribbean sponge *Tedania ignis* and structurally related 13-deoxytedanolide (2) was isolated from a Japanese sea sponge, *Mycale adhaerens*, by Fusetani *et al.*^{1b} in 1991. Both tedanolide (1) and 13-deoxytedanolide (2) exhibit very potent biological activities against certain tumor cell lines.^{1a} Their complex structures and distinctive biological properties make them extremely attractive targets for synthetic chemists.² Recently Kalesse^{3a,b} and Smith^{3c} have reported successful total syntheses of tedanolide (1).

As shown in Scheme 1, our retrosynthetic strategy for tedanolide (1) was the disconnection to two subunits 4 and 5 *via* cleavage at ester C-O bond and the aldol condensation transformation. The subunit 5 was envisioned to be obtained from the coupling between precursors 6 and 7. Herein we disclose our efforts in the construction of the C1-C7 fragment 6 of tedanolide (1).

At first stage, we have utilized the Roush protocol as a key methodology toward fragment **6**. The synthesis began with the known aldehyde **9**.⁴ The Roush asymmetric crotylation upon **9** with **10** gave the desired product in 80% yield as a 92:8 mixture of two diastereomers,⁵ which was methylated to the methyl ether **11** in good yield. Ozonolysis of **11**

furnished aldehyde **12**. The second Roush crotylation on **12** did not yield the desired product. Instead we obtained a mixture of diastereomers (Scheme 2).

Because of the observed lability of aldehyde **12** during the second crotylation, we considered the modification of the synthetic pathway. As a replacing measurement for the second Roush crotylation, we devised the combined application of Sharpless asymmetric epoxidation⁶ and Gilman cuprate reaction.⁷

As shown in Scheme 3, we established a highly stereoselective synthesis of precursor 6 *via* epoxide ring-opening and Mitsunobu reaction.⁸ The oxidative cleavage of the terminal vinyl group of 11 followed by immediate Horner-Wadsworth-Emmons reaction provided α,β -unsaturated ester 15 in 75% yield over two steps (*trans:cis* = 96:4). Subsequent reduction of ester 15 using DIBAL-H gave the intermediate allylic alcohol and Sharpless epoxidation upon this alcohol with Ti(O'Pr)₄, L-DET and TBHP afforded stereoselectively epoxide 8 in nearly quantitative yield ($\beta/\alpha \ge 30$). Epoxide ring opening of 8 by the treatment with MeLi and CuI furnished the intermediate 1,3-diol (1,3-diol:1,2diol = 88:12) and the exposure of the resulting 1,3-diol to 16 with PPTS yielded *p*-methoxyphenyl acetal 17 in 70% yield. To introduce the requisite stereochemistry at C2, the

Scheme 2. Stereoselective Control *via* Roush Crotylation. (a) **10**, 4A MS, PhMe, -78 °C, 3 h, 80%. (b) NaH, MeI THF, 0 °C, 3 h, 90%. (c) O₃, MeOH, -78 °C, 30 min; Me₂S. (d) **13**, 4A MS, PhMe, -78 °C, 3 h, 82%.

1448 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 8

Communications to the Editor

Scheme 3. Synthesis of the precursor 6. (a) OsO_4 , NMO, $Me_2CO:H_2O$ (5:1), rt, 6 h. (b) $NaIO_4$, THF:H₂O (5:1), 0 °C, 30 min. (c) (EtO)₂P(O)CH₂CO₂Et, NaH, THF, -78 °C, 2 h, 53% over three steps from **11**. (d) DIBAL-H, THF, 0 °C, 2 h, 88%. (e) Ti(O'Pr)₄, L-DET, TBHP, CH₂Cl₂, -78 °C, 3 h, 94%. (f) Me_2CuLi , Et_2O , -78 °C, 2 h; NaIO₄, 82%. (g) **16**, PPTS, CH₂Cl₂, 0 °C, 2 h, 70%. (h) TBSOTf, ⁷Pr₂NEt, DCE, 80 °C, 48 h; I₂, NaHCO₃, THF:H₂O (4:1), rt, 30 min, 84%. (i) Ph₃P, DIAD, PhCOOH, THF, rt, 12 h; K₂CO₃, MeOH, 0 °C, 3 h, 68%. (j) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 30 min, 97%. (k) DIBAL-H, CH₂Cl₂, 0 °C, 2 h, 85%, (l) SO₃·py, Et₃N, CH₂Cl₂, DMSO, 0 °C, 1 h, 88%.

acetonide group in **17** was treated with TBSOTf and iodine in sequence and the consequent inversion of the hydroxyl group at C2 *via* Mitsunobu reaction provided the desired alcohol **19** in 57% yield over two steps from **17**. Subsequently the protection of a hydroxyl group of **19** by treatment with TBSOTf and 2,6-lutidine and regioselective opening of the intermediary *p*-methoxyphenyl acetal using DIBAL-H provided the bis(TBS) ether **20** in good yield. Finally, the target precursor **6** was successfully afforded from Parikh-Doering oxidation upon alcohol **20**.

In summary, we have developed an efficient synthetic pathway of the C1-C7 fragments **6** of tedanolide (**1**). Successfully we introduced the stereogenic centers at C2 and C6 using Mitsunobu and epoxide ring-opening reactions. Continued advancement of precursor **6** toward the total synthesis of tedanolide (**1**) will be reported in due course.

Acknowledgments. The financial support from the Korea Science and Engineering Foundation (Grant-in-aid: R01-2005-000-10032-0) was greatly appreciated.

References

- (a) Schmitz, F. J.; Gunasekera, S. P.; Yalamanchili, G.; Hossain, M. B.; Van der Helm, D. J. Am. Chem. Soc. **1984**, 106, 7251-7252. (b) Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. J. Org. Chem. **1991**, 56, 4971-4974.
- (a) Matsushima, T.; Horita, K.; Nakajima, N.; Yonemitsu, O. *Tetrahedron Lett.* **1996**, *37*, 385-388. (b) Matsushima, T.; Mori, M.; Nakajima, N.; Maeda, H.; Uenishi, J.; Yonemitsu, O. *Chem. Pharm. Bull.* **1998**, *46*, 1335-1336. (c) Taylor, R. E.; Ciavarri, J. P.; Hearn, B. R. *Tetrahedron Lett.* **1998**, *39*, 9361-9364. (d) Roush, W. R.; Lane, G. C. Org. Lett. **1999**, *1*, 95-98. (e) Matsushima, T.; Mori, M.; Zheng, B. Z.; Maeda, H.; Nakajima, N.; Uenishi, J.; Yonemitsu, O. Chem. Pharm. Bull. **1999**, *47*, 308-321. (f) Jung, M. E.; Karama, U.; Marquez, R. J. Org. Chem. **1999**, *64*, 663-665.

(g) Matsushima, T.; Zheng, B. Z.; Maeda, H.; Nakajima, N.; Uenishi, J.; Yonemitsu, O. Synlett 1999, 780-782. (h) Smith, A. B.; Lodise, S. A. Org. Lett. 1999, 1, 1249-1252. (i) Jung, M. E.; Marquez, R. Tetrahedron Lett. 1999, 40, 3129-3132. (j) Matsushima, T.; Nakajima, N.; Zheng, B. Z.; Yonemitsu, O. Chem. Pharm. Bull. 2000, 48, 855-860. (k) Zheng, B. Z.; Yamauchi, M.; Dei, H.; Kusaka, S.; Matsui, K.; Yonemitsu, O. Tetrahedron Lett. 2000, 41, 6441-6445. (1) Zheng, B. Z.; Yamauchi, H.; Dei, H.; Yonemitsu, O. Chem. Pharm. Bull. 2000, 48, 1761-1765. (m) Jung, M. E.; Marquez, R. Org. Lett. 2000, 2, 1669-1672. (n) Jung, M. E.; Lee, C. P. Org. Lett. 2001, 3, 333-336. (o) Loh, T. P.; Feng, L. C. Tetrahedron Lett. 2001, 42, 6001-6005. (p) Loh, T. P.; Feng, L. C. Tetrahedron Lett. 2001, 42, 3223-3226. (q) Matsui, K.; Zheng, B. Z.; Kusaka, S.; Kuroda, M.; Yoshimoto, K.; Yamada, H.; Yonemitsu, O. Eur. J. Org. Chem. 2001, 3615-3624. (r) Hearn, B. R.; Ciavarri, J. P.; Taylor, R. E. Org. Lett. 2002, 4, 2953-2955. (s) Hassfeld, J.; Kalesse, M. Synlett 2002, 2007-2010. (t) Ehrlich, G.; Kalesse, M. Synlett 2005, 655-657. (u) Wong, C. M.; Loh, T. P. Tetrahedron Lett. 2006, 47, 4485-4489. (v) Iqbal, J.; Nyavanandi, V. K.; Nanduri, S.; Vasudev, R.; Naidu, A. Tetrahedron Lett. 2006, 47, 6667-6672. (w) Jung, M. E.; Yoo, D. Org. Lett. 2007, 9, 3543-3546. (x) Nyavanandi, V. K.; Nadipalli, P.; Nanduri, S.; Naidu, A.; Iqbal, J. Tetrahedron Lett. 2007, 48, 6905-6911. (y) Jung, M. E.; Yoo, D. Tetrahedron Lett. 2008, 49, 816-819.

- (a) Ehrlich, G.; Hassfeld, J.; Eggert, U.; Kalesse, M. J. Am. Chem. Soc. 2006, 128, 14038-14039. (b) Ehrlich, G.; Hassfeld, J.; Eggert, U.; Kalesse, M. Chem. Eur. J. 2008, 14, 2232-2247. (c) Smith, A. B.; Lee, D. J. Am. Chem. Soc. 2007, 129, 10957-10962.
- 4. (a) Baer, E.; Fischer, H. O. L. *J. Biol. Chem.* 1939, *128*, 463-500.
 (b) Hertel, L. W.; Grossman, C. S.; Kroin, J. S. *Synthetic Commun.* 1991, *21*, 151-154.
- (a) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186-8190.
 (b) Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Park, J. C. J. Org. Chem. 1990, 55, 4109-4117.
- Sharpless, K. B.; Gao, y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H. J. Am. Chem. Soc. **1987**, 109, 3765-3780.
- (a) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. **1986**, 108, 3422-3434. (b) Ishibashi, M.; Kobayashi, J. Heterocycles **1997**, 44, 543-572.
- (a) Mitsunobu, O. Synthesis 1981, 1-28. (b) Kim, A.; Hong, J. H. Bull. Korean Chem. Soc. 2006, 27, 976-980. (c) Li, H.; Hong, J. H. Bull. Korean Chem. Soc. 2007, 28, 1645-1650.