Communications

Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO_{4} under Oxygen Atmosphere

Kang-Hyeok Lee and Kwang-Youn Ko*
Department of Chemistry, Ajou University, Suwon 443-749, Korea. *E-mail: kyko@ajou.ac.kr Received September 30, 2005

Key Words : Oxidation, Hydrazone, Potassium permanganate, Supported reagent

Diphenyldiazomethane $\left(\mathrm{Ph}_{2} \mathrm{CN}_{2}\right)$ is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters ${ }^{1}$ since dpm group can be easily deprotected by mild acidic condition ${ }^{2 a}$ or hydrogenolysis, ${ }^{2 b}$ especially in the field of b-lactams and peptides. ${ }^{3}$ Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, ${ }^{4 \mathrm{a}}$ mercuric oxide, ${ }^{4 \mathrm{~b}}$ peracetic acid, ${ }^{4 \mathrm{c}}$ iodosobenzene diacetate ${ }^{4 \mathrm{~d}}$ or OXONE ${ }^{\circledR 4 \mathrm{e}}$ However, some methods suffer from a disadvantage such as toxic nature of reagent, ${ }^{4 \mathrm{~b}}$ strong oxidative conditions ${ }^{4 c}$ or incompatibility with certain functional groups. ${ }^{4 c, e}$ For example, OXONE ${ }^{\circledR}$ may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group. ${ }^{5}$

We reported that Magtrieve ${ }^{\text {TM }}$, a magnetically retrievable oxidant $\left(\mathrm{CrO}_{2}\right)$ can serve as an efficient reagent for the oxidation of benzophenone hydrazone to diphenyldiazomethane. ${ }^{6}$ However, we have found that one shortcoming of this method lies in a fact that a large amount of this oxidant is required, rendering a large scale reaction cumbersome.

Recently, potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ supported on solid supports such as alumina, ${ }^{7 \mathrm{a}}$ copper sulfate, ${ }^{7 \mathrm{~b}}$ zeolite, ${ }^{7 \mathrm{c}}$ silica gel ${ }^{7 \mathrm{~d}}$ or clay ${ }^{7 \mathrm{e}}$ has been used for the oxidation of various substrates. For example, oxidation of 2-imidazolines, ${ }^{7 a}$ thiols, ${ }^{7 \mathrm{~b}}$ enamines, ${ }^{7 \mathrm{c}}$ alcohols ${ }^{7 \mathrm{~d}}$ and alkylarenes ${ }^{7 \mathrm{e}}$ has been performed using KMnO_{4} supported on solid supports. Similarly, zinc dichromate adsorbed on alumina was used for the oxidation of alcohols. ${ }^{8}$ However, KMnO_{4} has not yet been used for the oxidation of hydrazones. We envisioned that solid-supported KMnO_{4}, a cheap and environmentfriendly oxidant might be used for the oxidation of benzophenone hydrazone. Herein we wish to report that aluminasupported KMnO_{4} in oxygen atmosphere can be used for the catalytic oxidation of benzophenone hydrazone to diphenyldiazomethane in high yields.

We investigated the oxidation of benzophenone hydrazone
under a variety of conditions, as shown in Table 1.
Treatment of the hydrazone (1 mmol) with $\mathrm{KMnO}_{4}(1$ mmol)/alumina in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the formation of diphenyldiazomethane and dark brown solid $\left(\mathrm{MnO}_{2}\right)$ within $1 \mathrm{~h} .{ }^{9}$ Silica gel was less efficient than alumina as supports (entry 1 vs. entry 2). When the amount of KMnO_{4} was reduced to 0.1 mmol per 1 mmol of hydrazone, the reaction was not complete within 2 days under N_{2} atmosphere, as expected. Remarkably, this conversion could be completed within 6 h and 40 h under 1 atm of O_{2} atmosphere and air, respectively. The presence of large amount of water or the use of inactivated alumina did not affect the reactivity of alumina-supported KMnO_{4} (entries 6, 7). As reported before, ${ }^{4 \mathrm{a}}$ the use of excess amount (12 molar equivalent) of active MnO_{2} shortened the reaction time to 10 min (entry 8). ${ }^{10}$ When 1.2 mmol of MnO_{2} was used per 1 mmol of substrate, the reaction was not completed within 3 days under N_{2} atmosphere. However, the same reaction could be

Table 1. Oxidation of Benzophenone Hydrazone with SolidSupported $\mathrm{KMnO}_{4}{ }^{a}$

	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NNH}_{2}$	oxidant		
		$\mathrm{CH}_{2} \mathrm{Cl}_{2},-\mathrm{H}_{2} \mathrm{O}$		
Entry	Oxidant b	Supports c	Atmosphere	Time
1	$\mathrm{KMnO}_{4}(1 \mathrm{mmol})$	Alumina	N_{2}	1 h
2	$\mathrm{KMnO}_{4}(1 \mathrm{mmol})$	Silica gel	N_{2}	3 h
3	$\mathrm{KMnO}_{4}(0.1 \mathrm{mmol})$	Alumina	N_{2}	d
4	$\mathrm{KMnO}_{4}(0.1 \mathrm{mmol})$	Alumina	Air	40 h
5	$\mathrm{KMnO}_{4}(0.1 \mathrm{mmol})$	Alumina	O_{2}	6 h
6	$\mathrm{KMnO}_{4}(0.1 \mathrm{mmol}) /$	Alumina	O_{2}	6 h
	$\mathrm{H}_{2} \mathrm{O}(10 \mathrm{mmol})$			
7	$\mathrm{KMnO}_{4}(0.1 \mathrm{mmol})$	Alumina ${ }^{e}$	O_{2}	6 h
8	$\mathrm{MnO}_{2}(12 \mathrm{mmol})$	none	N_{2}	10 min
9	$\mathrm{MnO}_{2}(1.2 \mathrm{mmol})$	none	N_{2}	f
10	$\mathrm{MnO}_{2}(1.2 \mathrm{mmol})$	none	O_{2}	5 h

${ }^{a}$ Solvent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{b}$ The amount of KMnO_{4} used per 1 mmol of hydrazone. ${ }^{c}$ Dried at $300{ }^{\circ} \mathrm{C}$ for 30 min before use. $\mathrm{Al}_{2} \mathrm{O}_{3}$: Aldrich, activated, neutral, Brockmann I, 150 mesh, surface area $155 \mathrm{~m}^{2} / \mathrm{g}$. Silica gel: Merck, 70-230 mesh. ${ }^{d}$ Incomplete within 2 days. ${ }^{e}$ Not dried. ${ }^{5}$ Incomplete within 3 days

Table 2. Preparation of Diphenylmethyl Esters from Acids ${ }^{a}$

$\mathrm{RCO}_{2} \mathrm{H}$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NNH}_{2}$, cat. $\mathrm{KMnO}_{4} /$ Alumina			$\mathrm{RCO}_{2} \mathrm{CHPh}_{2}$	
Entry	Acids	Time (h)	Yield $(\%)^{b}$	mp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{mp}\left({ }^{\circ} \mathrm{C}\right) \\ \text { (lit.) } \end{gathered}$
1a C	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	1	92	87-88	$87.5-88^{12}$
$1 b^{c}$ C	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	1	78		
2 C	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$	0.2	90	90-91	$88.5-89^{6}$
3 C	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{H}$	0.5	94	72-73	$72.5{ }^{\text {d }}$
4 C	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}_{2} \mathrm{H}$	3	77	oil	
$5 \begin{gathered}\text { N } \\ \text { an }\end{gathered}$	N -Phenylacetyl-7aminocephalosporic acid	2	85	144-145	$144.5-145^{6}$

${ }^{a}$ All the esters were identified by spectroscopic methods. ${ }^{b}$ Yield refers to the pure isolated product. ${ }^{c}$ One-pot reaction. ${ }^{d}$ Beilstein E III 9,2695.
completed within 5 h under O_{2} atmosphere (entry 9 vs. entry 10). With these results on hand, the catalytic nature of KMnO_{4} oxidation can be postulated by Scheme 1. First, permanganate ion is reduced into MnO_{2} during the hydrazone oxidation. Solid MnO_{2} thus generated participates in another oxidation process, while being reduced into Mn^{2+} oxidation state. Mn^{2+} ion is reoxidized by O_{2} in basic media to $\mathrm{MnO}_{2},{ }^{11}$ thus completing the catalytic cycle. It is remarkable that only catalytic amount of oxidant is required in the present oxidation even though the reaction occurs in a heterogeneous phase.
Diphenyldiazomethane prepared according to entry 5 in Table 1 was employed for the protection of carboxylic acids, as shown in Table $2 .{ }^{12}$ Functional groups such as hydroxyl group (entry 2), C-C double bond (entry 3) and sulfide (entry 5) were intact during this oxidation. It should be noted that one-pot reaction is also feasible, even though a slightly lower yield of product is obtained probably due to the basic nature of reaction medium (entry 1b).
In conclusion, $\mathrm{KMnO}_{4} /$ alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant
under O_{2} atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where $\mathrm{KMnO}_{4} /$ alumina reagent acts as a catalytic oxidant under O_{2} atmosphere.

References

1. (a) Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; John Wiley and Son: New York, 1991; pp 253-254. (b) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, 1994; pp 136-139.
2. (a) Silverman, R. B.; Holladay, M. W. J. Am. Chem. Soc. 1981, 103, 7357-7358. (b) De Bernardo, S.; Tengi, J. P.; Sasso, G. J.; Weigele, M. J. Org. Chem. 1985, 50, 3457-3462.
3. Yamanaka, H.; Chiba, T.; Kawabata, K.; Takasugi, H.; Masugi, T.; Takaya, T. J. Antibiot. 1985, 38, 1738-1751.
4. (a) Reimlinger, H. Chem. Ber. 1964, 97, 3493-3502. (b) Smith, L. I.; Howard, K. L. In Organic Syntheses, Collective Volume 3; Horning, E. C., Editor-in-Chief; John Wiley and Sons: New York, 1955; pp 351-352. (c) Micetich, R. G.; Maiti, S. N.; Spevak, P.; Tanaka, M.; Yamazaki, T.; Ogawa, K. Synthesis 1986, 292-296. (d) Lapatsanis, L.; Milias, G.; Paraskewas, S. Synthesis 1985, 513515. (e) Curini, M.; Rosati, O.; Pisani, E. Tetrahedron Lett. 1997, 38, 1239-1240.
5. Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Editor-in-Chief; John Wiley and Sons: Chichester, 1995; Vol. 6, p 4268.
6. Ko, K.-Y.; Kim, J.-Y. Bull. Korean Chem. Soc. 1999, 20, 771-772.
7. (a) Abdollahi-Alibeik, M.; Mohammadpoor-Baltork, I.; Zolfigol, M. A. Bioorg. Med. Chem. Lett. 2004, 14, 6079-6082. (b) Shaabani, A.; Lee, D. G. Tetrahedron Lett. 2001, 42, 5833-5836. (c) Sreekumar, R.; Padmakumar, R. Tetrahedron Lett. 1997, 38 , 5143-5146. (d) Lou, J.-D.; Wang, M.; Zhu, L.-Y.; Fang, Z.-G. Cat. Commun. 2003, 4, 647-649. (e) Shaabani, A.; Bazgir, A.; Teimouri, F.; Lee, D. G. Tetrahedron Lett. 2002, 43, 5165-5167.
8. Feizi, N.; Hassani, H.; Hakimi, M. Bull. Korean Chem. Soc. 2005, 26, 2084-2086.
9. Stoichiometry demands that 0.67 mol of MnO_{4}^{-}is required per 1 mol of substrate, assuming the change of the oxidation state of +7 to +4 in a homogeneous reaction.
10. Active MnO_{2} was prepared according to the Attenburrow protocol. See, Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Editor-in-Chief; John Wiley and Sons: Chichester, 1995; Vol. 5, p 3230.
11. Mn^{2+} ion in basic media is very easily oxidized even by air to MnO_{2}. See, Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; John Wiley \& Sons: New York, 1980; p 738.
12. As a typical procedure, a solution of benzophenone hydrazone ($200 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{KMnO}_{4} /$ alumina reagent ($116 \mathrm{mg}, 0.1 \mathrm{mmol}$ of $\mathrm{KMnO}_{4}, 1 \mathrm{mmol} \mathrm{KMnO}_{4} / \mathrm{g}$ alumina) and the mixture was stirred at rt under O_{2} atmosphere. After 24 h , the reaction was found to be complete. Then, the reaction mixture was filtered through Celite to give a purple solution of $\mathrm{Ph}_{2} \mathrm{CN}_{2}$, which was then treated with a solution of benzoic acid ($135 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$ until the reaction was complete. Concentration of the reaction mixture followed by column chromatography gave diphenylmethyl benzoate in 92% yield, $\mathrm{mp} 87-88^{\circ} \mathrm{C}$ (Lit. $.^{13} \mathrm{mp} 87.5-88^{\circ} \mathrm{C}$).
13. Hiskey, R. G.; Adams, J. B. Jr. J. Am. Chem. Soc. 1965, 87, 39693973.
