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A many-body master equation is constructed by incorporating stochastic terms responsible for chemical

reactions into the many-body Smoluchowski equation. Two forms of Langevin-type of memory equations

describing the time evolution of dynamical variables under the influence of time-independent perturbation with

an arbitrary intensity are derived. One form is convenient in obtaining the dynamics approaching the steady-

state attained by the perturbation and the other in describing the fluctuation dynamics at the steady-state and

consequently in obtaining the linear response of the system at the steady-state to time-dependent perturbation.

In both cases, the kinetics of statistical averages of variables is found to be obtained by analyzing the dynamics

of time-correlation functions of the variables.
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Introduction

Chemical reactions in liquid occur under the influence of

diffusive motion of reactants. Since the pioneering work was

done by Smoluchowski, many theoretical studies have been

proposed to explain the effects of molecular diffusion on the

rates of chemical reactions.

One of most popular approaches is based on reduced

distribution functions of reactants.1 One-particle reduced

distribution function is introduced in this method. Dynamics

of the one-particle reduced distribution function is coupled

to two-particle reduced distribution function via time-

dependent rate coefficients which is determined by the

dynamics of two-particle reduced distribution function. Such

hierarchical structure extends to N-particle distribution

function and solving the hierarchical problem is equivalent

to solving the N-particle equations of motion. Thus in order

to make the problem tractable, one should truncate the

hierarchy at a certain level of reduced distribution function.

Such truncation procedure often brings some uncontrollable

errors in the framework.

Another popular approach is to employ memory kernel in

the rate equation for one-particle reduced distribution function

instead of time-dependent rate coefficient. The former is

non-local in time while the latter is local. Examples which

have been known powerful in a few cases of reactions

include the integral encounter theory,2,3 the modified

encounter theory,4 the memory equation approach developed

by Yang, Lee, and Shin,5-7 the many-particle kernel theory,8,9

the relaxation time approximation,10 and the unified

Smoluchowski approximation.11 Although the details of

various forms of the memory equation approach are diverse,

theoretical basis for the equations with time-nonlocal

memory kernel may be found in the framework developed

by Mori to derive the generalized Langevin equation for the

motion of Brownian particle.12

In this paper, we introduce a many-body reaction-

Smoluchowski equation which describes the stochastic

processes of microscopic chemical reactions as well as

diffusive motion of reactants. From the reaction-

Smoluchowski equation, using Mori’s projection operator

technique, we derive two forms of memory equations for the

time-evolution of density fields of reactants under time-

independent perturbation. One form is suitable for obtaining

the kinetics approaching the steady-state to be attained by

continuous action of the perturbation on the system in

equilibrium state. The other form is suitable for obtaining

the fluctuation dynamics of the density fields at the steady-

state. Attributed to the linear response theory, this equation

can be utilized to determine the kinetics following time-

dependent perturbation acted on the steady-state or on the

equilibrium state.

Reactive Many-Body Smoluchowski Equation

We introduce a many-body probability distribution function

ρ(q1, ···, qN; θ1, ···, θN; t) that N molecules are found,

respectively, at q1, ···, qN positions and their chemical species

θ1, ···, θN at time t. A set of these dynamical variables is

compactly denoted by Γ. Due to the molecular motion

caused by systematic intermolecular interaction and/or by

incessant random collisions with solvents, the probability

distribution function changes with time. In this case, the

evolution equation for ρ(q1, ···, qN; θ1, ···, θN; t) is assumed to

satisfy the many-body Smoluchowski equation:

(1)

where Di is the diffusion constant of the ith molecule and V

represents the potential of mean force in kBT unit with the

Boltzmann constant and T the absolute temperature. In

addition to diffusive motion of the molecules, the probability

distribution changes due to chemical reactions. In order to

take into account such processes, we add kinetic transition

∂

∂t
----ρ Γ;t( ) ∇i

i 1=

N

∑ Die
V– ∇ie

Vρ Γ;t( )⋅ ⋅=
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terms into Eq. (1):

  (2)

where ∫dΓ' denotes the classical trace implying the integration

over q'1, ···, q'N and the summation over θ'1, ···, θ 'N. W(Γ ←
Γ'; t) is the time-dependent transition rate for the system to

change from the phase point Γ' to Γ. The second and third

terms of the right hand side (RHS) of Eq.  (2) represent the

rates of incoming and outgoing transfer of probability

distribution function at the phase point Γ resulting from

chemical reactions. The formal solution of Eq. (2) is given in

terms of the forward tim-ordered exponential operator, e+
(··),

as  with the initial

equilibrium distribution function ρeq(Γ).

Time evolution of the mean value of a set of dynamical

variables Λ=(Λ1 ··· ΛN)T of the molecular system is obtained

by the ensemble average over the probability distribution

function

. (3)

The subscript t on <··> denotes an ensemble average over

a distribution at time t. Inserting the formal solution of

ρ(Γ;t) into it, we obtain

. (4)

We consider the integral  where A

and B are arbitrary dynamical variables. Integrating by parts

over the position variables for the Smoluchowski term and

interchanging the dummy variables Γ and Γ' for the

chemical reaction terms, the integral can be rewritten as

 . (5)

Repeatedly applying this equality to the expanded form of

Eq. (4), we obtain 

(6)

where

(7)

which is the classical Heisenberg picture of the time-

evolution corresponding to the classical Schrödinger picture

of Eq. (4). Here e_
(··) is the backward time-ordered exponential

operator.  denotes an ensemble average

over the equilibrium distribution ρeq.

Memory Equations

Dynamics approaching steady-state under time-inde-

pendent perturbation. If the transition rates are time-

independent, the time-evolution of the dynamical variables

is simply given, from Eq. (7), by Λ0(t) = eL0tΛ. Here the

subscript 0 denotes that the kinetic operator is time-

independent. We split L0 into two parts, equilibrium (Leq)

and time-independent perturbation (Lp) parts. Using Mori’s

projection operator technique, we will derive an evolution

equation for the set of dynamical variables ΔΛ0(t) ≡ Λ0(t) −
<Λ>eq which describes the time evolution of the variables

under the influence of the perturbation.

Differentiating ΔΛ0(t) with respect to time, we obtain the

kinetic equation

. (8)

We will consider the dynamical variables which is linear

to the perturbation, i.e., LpΔΛ = LpΛ = F·Λ. Here F is an

excitation matrix which depends on the intensity of the time-

independent perturbation. In this case, Eq. (8) becomes

. (9)

Following Mori’s procedure,12 we define projection operators

P and Q as  and Q =

1 − P. Here the superscript T denotes the transpose of a

vector. Inserting the identity P + Q = 1 into the first term of

RHS of Eq. (9), we obtain

(10)

where . 

Inserting P + Q = 1 again into the exponent of the second

term of RHS of Eq.  (10) and using the operator identity

, we can rewrite the

second term as

(11)

where . Inserting Eq. (11) into Eq.

(10) and noting that ·

, we obtain the kinetic equation with a

memory kernel matrix defined by

(12)

as

. (13)

This is the formally exact expression of the kinetic

∂

∂t
----ρ Γ;t( ) ∇i

i 1=

N

∑ Die
V– ∇ie

Vρ Γ;t( )⋅ ⋅=

 dΓ′∫ W Γ Γ′;t←( )ρ Γ′;t( ) W Γ′ Γ;t←( )ρ Γ;t( )–[ ]+

 L
† Γ;t( )ρ Γ;t( )≡

ρ Γ;t( ) exp+ dsL† Γ;s( )
0

t

∫{ }= ρeq Γ( )

Λ〈 〉 t d∫ ΓΛ Γ( )ρ Γ;t( )=

Λ〈 〉 t d∫ ΓΛ Γ( )exp+ dsL† Γ;s( )
0

t

∫{ }ρeq Γ( )=

dΓA Γ( )L† Γ;t( )∫ B Γ( )

dΓA Γ( )L† Γ;t( )∫ B Γ( )  dΓB Γ( )∫=

 eV ∇i
i 1=

N

∑ Die
V– ∇iA Γ( )⋅ ⋅ dΓ′W Γ′ Γ;t←( ) A Γ′( ) A Γ( )–{ }∫+×

 dΓB Γ( )L Γ;t( )∫ A Γ( )≡

Λ〈 〉 t dΓρeq Γ( )Λ Γ;t( )∫ Λ t( )〈 〉 eq= =

Λ Γ;t( ) exp_ ds
0

t

∫ L Γ;s( ){ }Λ Γ( )≡

··〈 〉eq dΓρeq ··( )∫≡

d

dt
----- Λ0Δ t( ) eL0t Leq Lp+( ) ΛΔ=

d

dt
----- Λ0Δ t( ) − F Λ0Δ t( )⋅  = eL0tLeq Λ Δ + F Λ〈 〉 eq⋅

PA A Λ
T

Δ⋅〈 〉 eq ΛΔ Λ
T

Δ⋅〈 〉 eq
1–

ΛΔ⋅ ⋅≡

d

dt
---- Λ0Δ t( ) − F Λ0Δ t( )⋅  = Ω Λ0Δ t( ) ⋅ + eL0tQLeq Λ Δ + F Λ〈 〉eq⋅

Ω Leq ΛΔ ΛΔ
T⋅〈 〉eq ΛΔ ΛΔ

T⋅〈 〉eq
1–

⋅≡

e
A B+( )t

 = e
Bt

+  
0

t

∫ dse
A B+( )s

Ae
B t s–( )

e
L0t

QLeq ΛΔ  = γ0 t( ) +  
0

t

∫ dse
L0s

PL0γ0 t s–( )

γ0 t( ) e
QL0t

QLeq ΛΔ≡

PL0γ0 s( ) = L0γ0 s( ) ΛΔ
T⋅〈 〉eq

ΛΔ ΛΔ
T⋅〈 〉eq

1–
ΛΔ⋅

φ0 t( ) Ω–≡ δ t( ) − L0γ0 t( ) ΛΔ
T⋅〈 〉 eq ΛΔ ΛΔ

T⋅〈 〉 eq
1–

⋅

d

dt
-----ΔΛ0 t( ) − F ΔΛ0 t( )⋅

 = −  
0

t

∫ dsφ0 t s–( ) ΔΛ0 s( )⋅ + γ0 t( ) + F Λ〈 〉eq⋅
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equation with a memory kernel under an arbitrary intensity

of perturbation. Since the evolution of the memory kernel

matrix is governed by , it should depend on the time-

independent perturbation ( ) as well as the equilibrium

dynamics of the system ( ). 

We note here two properties of : orthogonality and

randomness. As one can see from its definition,  is

projected by the operator Q and it should be orthogonal to

the vector ΔΛ, i.e.,  =  =

0. In addition, the average of  over the initial

equilibrium distribution should be zero as shown below:

 = 0. First we expand the exponential operator in

the definition of  as follows:

. (14)

The equilibrium average of the first term is zero since

 =  = 0. The last

equality holds owing to the time-invariance of the

equilibrium distribution function in the absence of any

perturbation. The equilibrium averages of the other terms

have the form of . Noting that the

equilibrium average of the P-projected part of arbitrary

variables must be zero by definition, we get the equalities

= =

. As we show in Appendix, the last term is zero if and only if

the Q-projected part of dynamical variables, , is

uncorrelated with the time-independent perturbation. In

other words, if the set of the selected variables Λ includes all

variables correlated with the time-independent perturbation,

then the equilibrium ensemble average of  in the

memory equation for the variables is zero and is called

random force term. Therefore in order to fully utilize the

memory equation formulation, we should include all

dynamical variables coupled to the time-independent

perturbation in Λ. When Λ is an incomplete set where some

variables correlated with the perturbation are missing, Eq.

does not hold and the equilibrium ensemble average of

 does not vanish. 

Since the random force term is orthogonal to the vector

, we multiply  on the RHS of Eq. and take the

average over the equilibrium distribution

. (15)

We define a relaxation function matrix in terms of

normalized correlation function

. (16)

Kinetics of the time correlation function may be studied

by various tools such as the fully renormalized kinetic theory

developed by Mazenko13,14 and later applied to diffusion

influenced reactions by Yang, Lee, and Shin.5-7 The time

correlation function reflects the dynamics occurring under

the time-independent perturbation in the equilibrium

ensemble. 

Solving Eq. (13) in the Laplace transform domain, we

obtain the dynamics of  in terms of the relaxation

function matrix: 

.

(17)

Utilizing the randomness of , the time evolution of

mean value of ΔΛ is obtained from Eq. (17)

. (18)

As one can see in Eq. (18), the key quantity to predict the

time evolution of mean value of dynamical variables

developing under the influence of the time-independent

perturbation is the time correlation function  which

reflects the fluctuation dynamics of equilibrium ensemble

affected by the perturbation. This relation illustrates a

special case of the fluctuation-dissipation theorem holding

for an arbitrary intensity of perturbation with the particular

linear property . The formal relation (18) with

 may be employed in the study of steady-state

kinetics of chemical reaction systems such as the Stern-

Volmer kinetics of fluorescence quenching reaction.15,16

Fluctuation dynamics at steady-state. In the previous

section, we derived a formal expression of the memory

equation describing the evolution of dynamical variables

under a time-independent perturbation. As the perturbation

keeps on, the system will approach a non-equilibrium

steady-state. In this subsection, we derive another memory

equation which is convenient for describing the fluctuation

dynamics of the dynamical variables at the steady state. We

consider the deviation of variables: 

where  with the probability distribution

function at the steady state, , denotes the

ensemble average at the steady-state attained at long times

under the influence of the time-independent perturbation. 

Differentiating  with respect to time, we obtain the

kinetic equation 

. (19)

Now, projection operators  and  are defined as 

 and . Repeat-

ing Mori’s procedure discussed in the previous section with

the new projection operators, we obtain the kinetic equation 

(20)

where 

,

with 

L0

Lp

Leq

γ0 t( )
γ0 t( )

γ0 t( ) ΔΛ
T⋅〈 〉eq Qγ0 t( ) ΔΛ

T⋅〈 〉eq
γ0 t( )

γ0 t( )〈 〉
eq

γ0 t( )

γ0 t( ) = 1 + QL0t  + 
1

2
---QL0QL0t

2
 + …⎝ ⎠

⎛ ⎞ QLeqΛ

LeqΛ〈 〉
eq

 ∫ dΓρeqLeqΛ =  ∫ dΓΛLeq

 †
ρeq

Q Leq Lp+( )Q ··( )〈 〉
eq

Q Leq Lp+( )Q ··( )〈 〉
eq

Leq Lp+( )Q ··( )〈 〉
eq

LpQ ··( )〈 〉
eq

Q ··( )

γ0 t( )

γ0 t( )

ΔΛ ΔΛ
T

d

dt
----- F.–

⎩ ⎭
⎨ ⎬
⎧ ⎫

ΔΛ0 t( ) ΔΛ
T⋅〈 〉 eq

 = −  
0

t

∫ dsφ0 t s–( ) ΔΛ0 s( ) ΔΛ
T⋅〈 〉 eq⋅

S0 t( ) ΔΛ0 t( ) ΔΛ
T⋅〈 〉eq ΔΛ ΔΛ

T⋅〈 〉eq
1–

⋅≡

ΔΛ0 t( )

ΔΛ0 t( ) =  
0

t

∫ dτS0 t τ–( ) ΔΛδ τ( ) + γ0 τ( ) + F Λ〈 〉eq⋅[ ]⋅

γ0 t( )

ΔΛ0 t( )〈 〉
eq

 =  
0

t

∫ dτS0 τ( ) F Λ〈 〉 eq⋅⋅

S0 t( )

LpΛ = F Λ⋅
t ∞→

δΛ0 t( ) Λ0 t( ) Λ〈 〉 ss–≡
··〈 〉 ss  ∫ dΓρss ··( )≡

ρss eL0
 † t

t ∞→
lim ρeq≡

δΛ0 t( )

d

dt
-----δΛ0 t( ) = eL0tL0δΛ

P̃ Q̃ P̃A ≡
A δΛ

T⋅〈 〉 ss δΛ δΛ
T⋅〈 〉 ss

1–
δΛ⋅ ⋅ Q̃ = 1 − P̃

d

dt
-----δΛ0 t( ) = −  

0

t

∫ dsφ̃0 t s–( ) δΛ0 s( ) + γ̃0 t( )⋅

φ̃0 t( ) −≡ Ω̃δ t( ) − L0
γ̃

0 t( ) δΛ
T⋅〈 〉 ss δΛ δΛ

T⋅〈 〉 ss
1–

⋅

γ̃
0 t( ) e

Q̃L0tQ̃L0δΛ≡
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. 

This is the formally exact kinetic equation describing the

fluctuation dynamics occurring at the steady-state under the

time-independent perturbation. When  (no time-

independent perturbation), Eqs. (13) and (20) become

identical as it should be. 

As one can see from its definition,  is projected by

the operator  and it should be orthogonal to the vector

, i.e., . In

addition, similarly in the previous section, the average over

the steady-state distribution should be zero as shown below.

We expand the exponential operator in the definition of

 as follows:

. (21)

The average of the first term over the steady-state

distribution is zero since 

 = 0. The last equality holds owing to the

time-invariance of the steady-state distribution function. The

other terms have the form of . Noting that the

average of the P-projected part over  must be zero by

definition, we get the equalities 

= 0. 

Although the two kinetic equations (13) and (20) contain

the same dynamical information governed by the operator

, the statistical properties of the random force terms 

in Eq. (13) and  in Eq. (20) are different.  is

random and orthogonal to Λ over the equilibrium

distribution while  over the steady-state distribution. 

Multiplying  on the RHS of Eq. (20) and taking the

average over the steady-state distribution , we obtain the

kinetic equation for the time-correlation function describing

the fluctuation dynamics of the variable Λ at the steady-state

.

(22)

We define a relaxation function matrix

. (23)

Similarly in Eq. (16), kinetics of the time correlation

function  may be studied by various tools. The time

correlation function reflects the fluctuation dynamics of the

variables Λ occurring at the steady-state attained by the

action of the time-independent perturbation.

Solving Eq. (20) in the Laplace transform domain, we

obtain the dynamics of  in terms of the relaxation

function matrix and random force term

. (24)

The mean value of  over the steady-state

distribution is zero, since = 0, as it

should be. 

Linear Response to Time-Dependent Perturbation:

Fluctuation-Dissipation. When a time-dependent pertur-

bation is acted on the system, it is not possible to solve the

kinetic equation (2) exactly. The kinetic operator for the

time-dependent perturbation is denoted by  and the

total kinetic operator is given by .

Applying the first order perturbation theory with respect to

, the probability distribution function is obtained

within the linear response theory as 

where  involves the effect of the perturbation which is

obtained by solving the kinetic equation

(25)

with . Eq. (25) is solved to 

. (26)

Inserting Eq. (26) along with  into Eq. (3) and noting

that  = 0, we obtain time-dependence of the

dynamical variables responding to the time-dependent

perturbation

. (27)

Applying the property (5), we rewrite Eq. (27) as 

. (28)

Inserting Eq. (24) describing the dynamics of  into

Eq. (28), we obtain

 (29)

 

where  is an excitation matrix which depends on the

intensity of the time-dependent perturbation. In order to

obtain the response of system within the linear order with

respect to time-dependent perturbation, one should have the

fluctuation dynamics of the time-correlation function

occurring at the steady-state which can be studied by other

theoretical methods. Eq. (29) illustrates the fluctuation-

dissipation theorem stemmed from the linear response

theory. The formally exact relation (29) may be utilized in

the study of frequency-domain kinetics of various chemical

reactions.17 The results will be published elsewhere.18 

Summary

We derived two exact formal expressions of memory

equations for the time-evolution of dynamical variables for

the systems of chemical reactions occurring in liquid under

time-independent perturbation with an arbitrary intensity.

One form is suitable for obtaining the information of

Ω̃ L0δΛ δΛ
T⋅〈 〉 ss δΛ δΛ

T⋅〈 〉 ss
1–

⋅≡

Lp = 0

γ̃
0 t( )

Q̃

δΛ γ̃
0 t( ) δΛ

T⋅〈 〉 ss Q̃γ̃
0 t( ) δΛ

T⋅〈 〉 ss⋅  = 0

γ̃
0 t( )

γ̃
0 t( ) = 1 +  Q̃L0t  +  

1

2
---Q̃L0Q̃L0t

2
 + ··⎝ ⎠

⎛ ⎞ Q̃L0δΛ

L0δΛ〈 〉
ss

 =  ∫ dΓρssL0δΛ = 

 ∫ dΓδΛL0
 † ρss

QL0Q ··( )〈 〉
ss

ρss

QL0Q ··( )〈 〉
ss

 = L0Q ··( )〈 〉
ss

L0
γ

0 t( )
γ̃

0 t( ) γ
0 t( )

γ̃
0 t( )

δΛ
T

ρss

d

dt
----- δΛ0 t( ) δΛ

T⋅〈 〉 ss = −  
0

t

∫ dsφ̃0 t s–( ) δΛ0 s( ) δΛ
T⋅〈 〉 ss⋅

S̃0 t( ) δΛ0 t( ) δΛ
T⋅〈 〉 ss δΛ δΛ

T⋅〈 〉 ss
1–

⋅≡

S̃0 t( )

δΛ0 t( )

δΛ0 t( ) =  
0

t

∫ dτS̃0 t τ–( ) δ τ( )δΛ +  γ̃0 τ( )[ ]⋅

δΛ0 t( )
δΛ〈 〉 ss = γ̃

0 t( )〈 〉
ss

L1 t( )
L t( ) = L0+L1 t( )

L1 t( )
ρ t( ) = ρss+ρ1 t( )

ρ1 t( )

∂

∂t
----ρ1 t( ) = L0

 †ρ1 t( ) + L1
 † t( )ρss

ρ1 t = 0( ) = 0

ρ1 t( ) =  
0

t

∫ dse
L0

 † t s–( )
L1

 † s( )ρss

ρss

δΛ〈 〉 ss

δΛ〈 〉 t =  
0

t

∫ ds  ∫ dΓδΛe
L0

 † t s–( )
L1

 † s( )ρss

δΛ〈 〉 t =  
0

t

∫ ds L1 s( )δΛ0 t s–( )〈 〉
ss

δΛ0 t( )

δΛ〈 〉 t =  
0

t

∫ dτ L1 τ( )S̃0 t τ–( ) δΛ⋅〈 〉 ss

=  
0

t

∫ dτS̃0 t τ–( ) L1 τ( )δΛ〈 〉
ss

⋅

=  
0

t

∫ dτS̃0 t τ–( ) F τ( ) Λ〈 〉 ss⋅ ⋅

F τ( )



Memory Equations for Kinetics of Diffusion-Influenced Reactions  Bull. Korean Chem. Soc. 2006, Vol. 27, No. 10     1663

dynamics approaching the steady-state to be attained by the

continuous action of the perturbation on the system which

was in equilibrium. The other form is suitable for obtaining

the fluctuation dynamics of the variables occurring at the

steady-state. Attributed to the linear response theory, this

equation can be utilized to determine the kinetics following

time-dependent perturbation acted on the steady-state or on

the equilibrium state. 
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Appendix. Dynamical Variable Representation of 

By the principle of the maximum uncertainty measure of the
information theory,19 the statistical distribution of a system at time t is

written regardless of whether the system is in the equilibrium or not as

(A1)

where the generalized partition function Z(t) is defined by

. (A2)

Here Λ is a set of dynamical variables specifying the macrostate of

the system and λ(t) is the set of the parameters conjugated to Λ at time

t which is related to experimental measurements of Λ. For an

equilibrium distribution, λ(t) = λeq is constant in time and in this case
 is time-independent. For

example, Λ is energy and  for the canonical distribution

function.
When an external perturbation giving rise to change of expectation

values of dynamical variables is acted on the system, the rate of

change of the distribution function induced by the external
perturbation is related to the changing rates of the conjugated variables

λ(t) as follows:

(A3)

 

 

The subscript p on both Λ and λ denotes the subset of the variables

correlated with the external perturbation. 
Using the formula (A3), we can show that  under

the condition discussed in the above subsection:

 

(A4)

if and only if the set of variables Λ defined in the projection

operator coincides with Λp. 
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