New Fused Quinoxalines : Synthesis and Reactions of Pyrimidothienoquinoxaline and Oxadizolylthienoquinoxalines

Osama S. Moustafa,^{*} Mahmoud Z. A. Badr, and Talaat I. El-Emary

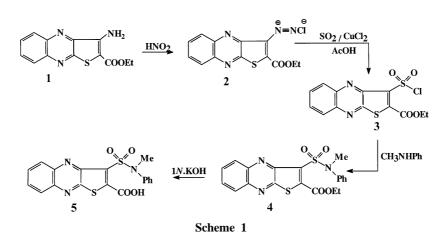
Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt Received November 22, 2001

Diazotization of 3-amino-2-ethoxycarbonylthieno[2,3-b]quinoxaline **1** gave the diazonium salt **2** which was reacted with SO₂ and *N*-methylaniline to give sulfamoylquinoxaline derivatives **3-5**. Imidazothienoquinoxaline **8** was obtained from the reaction of carboxylic acid hydrazide **6** with nitrous acid and followed by boilling the carboazide **7** in dry xylene. Also, compound **6** react with CH(OEt)₃ to give aminopyrimidine **9** which was reacted with arylidene malonodinitrile, furfural and/or dimethoxy-tetrahydrofuran to afford compounds **10**, **11** and/or **12** respectively. Refluxing of **6** with CS₂ gave oxadiazolylthienoquinoxaline **13**, reaction of **13** with hyrazine hydrate, CH(OEt)₃, nitrous acid, CS₂ and α -halocompounds to give **14-19**.

Keywords : Synthesis, Diazotization, Heterocycles, Pyrimidothienoquinoxalines.

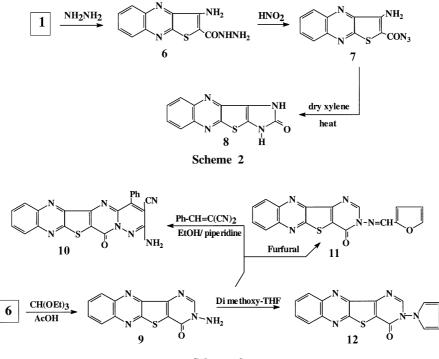
Introduction

Among the wide variety of quinoxaline derivatives that have been explored for developing pharmaceutically important molecules for examples, imidazoquinoxalines ribonucleosides as linear of antiviral,¹ pyrazoloquinoxaline showed a relatively high antibacterial activity wherien MIC value was 25 µg/mL against Bacillus Licheniformis and Cellulomonas Sp.,² quinoxaline-1,4-di-N-oxides for treatment of tuberculosis,³ pyrimido[4,5-b]quinoxaline used as anti-hypertensive and blood platelet antiaggregating agents,⁴ also some quinoxaline derivatives have a cytotoxic effects on human cancer cell lines,^{5,6} commercially impotant as agrochemicals,7 herbicides,8 hypoxic-cytoxic agents,9 antivirus (Hepatitis B),¹⁰ antimicrobial,¹¹ and amebicides,¹² we are taking all the above benefits into consideration and in continuation of our work in synthesis of fused heterocyclic rings with quinoxaline moiety.13-19


Results and Discussion

In this work we aimed to synthesize some diferent hetero-

cycles systems fused with thieno[2,3-b]quinoxaline hoping that they may be highly biological activity. The reaction of 3-amino-2-ethoxycarbonylthieno[2,3-b]quinoxaline 1^{15} with nitrous acid and then sulfur dioxide and cupric chloride in acetic acid gave the 2-ethoxycarbonylthieno[2,3-b]quinoxaline-3-sulfonylchloride 3 *via* the diazonium salt 2.¹⁵ The reaction of 3 with *N*-methylaniline afforded the 3-sulfamoyl-thienoquinoxaline 4, whose hydrolysis provided the 3-sulfamoyl-2-carboxylic acid 5 (Scheme 1).


3-Amino-2-thieno[2,3-b]quinoxaline-2-carboxylic acid hydrazide **6** was obtained by refluxing the coressponding ethyl ester **1** in ethanolic hydrazine hydrate¹⁴ which was reacted with nitrous acid (NaNO₂/AcOH) to produce the corresponding 3-amino-2-carboazide derivative **7**, which underwent Curtius rearrengment when refluxed in dry xylene to the imidazothieno[2,3-b]quinoxalinone **8** (Scheme 2).

The reaction of carohydrazide 6 with triethyl orthoformate in ethanol in the presence of catalytic amount of acetic acid led to the formation of 3-aminopyrimidothieno[2,3-b]quinoxalinone 9, which was subjected to Michael reaction when reacted with benzylidene malonodinitrile in ethanol in the presence of a few drops of piperidine to give the pyrida-

*Corresponding Author: E-mail: oshmous@aun.eun.eg

Osama S. Moustafa et al.

Scheme 3

zinopyrimidothieno[2,3-b]quinoxalinone **10**. While the reaction of aminopyrimidine **9** with furfural and with dimethoxytetrahydrofuran provided the Schiff bases **11** and 3-(1-pyrryl) derivative **12**, respectively (Scheme 3).

When the carbohydrazide **6** was refluxed with carbon disulfide in pyridine gave oxadiazolylthienoquinoxaline **13** which was refluxed with hydrazine hydrate to produce 3-amino-2-(2-hydrazino-1,3,4-oxadiazol-5-yl)thieno[2,3-b]quinoxaline **14**. The latter compound was reacted with triethyl orthoformate and with nitrous acid to give (triazolo and tetrazolo)oxadiazolylthienoquinoxalines **15** and **16** resectively. Also, when **14** was allowed to react with carbon disulfide in pyridine the sulfanyltriazolooxadiazolyl derivative **17** was formed. Furthermore, the reaction of the thio-

oxadiazol 13 with α -halocompounds in the presence of sodium acetate yield S-alkylated derivatives 18 and 19 (Scheme 4).

Experimental Section

Melting points were determined on a Gallen Kamp melting point apparatus and were uncorrected. IR spectra were recorded on a Pye-Unicam SP³-100 spectrophotometer using KBr wafer technique. ¹H NMR spectra were recorded on a 90 MHz Varian EM-390 NMR spectrometer in a suitable deutreated solvent (TMS) as the internal standard. Elemental analyses were determined on a Perkin-Elmer 240 C microanalyzer. Elemental analysis, melting points, yields and

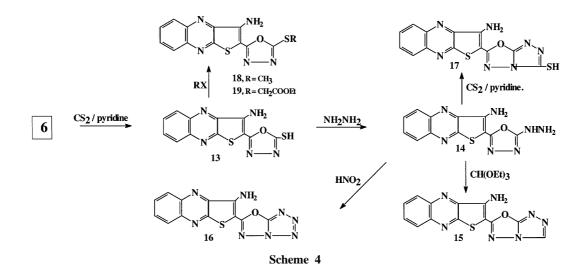


 Table 1. Melting Points, Yields and Analytical Data of Compounds

 3-19

Comp.	M.P°C	Formula	Calculated/found			
No	(Yield%)	Mol. Wt	С	Н	Ν	S
3 ^{<i>a</i>}	310	$C_{13}H_9N_2O_4S_2Cl$	43.75	2.52	7.85	17.95
	(80)	356.5	43.67	2.41	7.79	17.89
4	180	$C_{20}H_{17}N_3O_4S_2$	56.20	3.98	9.83	14.98
	(68)	427	56.07	3.86	9.78	14.88
5	220-21	$C_{18}H_{13}N_3O_4S_2$	54.13	3.25	10.52	16.04
	(75)	399	54.17	3.20	10.43	15.89
7	240	C11H6N6OS	48.88	2.22	31.11	11.85
	(83)	270	48.79	2.18	31.07	11.78
8	190	C11H6N4OS	54.54	2.47	23.14	13.22
	(80)	242	54.49	2.38	23.09	13.11
9	290	C ₁₂ H ₇ N ₅ OS	53.53	2.60	26.02	11.89
	(70)	269	53.44	2.56	26.12	11.90
10	225	$C_{22}H_{11}N_7OS$	62.70	2.61	23.27	7.60
	(77)	421	62.61	2.54	23.00	7.54
11	>360	$C_{17}H_9N_5O_2S$	58.78	2.59	20.17	9.22
	(70)	347	58.67	2.44	20.12	9.13
12	115	C ₁₆ H ₉ N ₅ OS	60.18	2.82	21.94	10.03
	(90)	319	59.98	2.77	21.84	10.00
13	320	$C_{12}H_7N_5OS_2$	47.84	2.32	23.25	21.26
	(81)	301	47.76	2.23	23.14	21.19
14	260	$C_{12}H_9N_7OS$	48.16	3.01	32.77	10.70
	(82)	299	48.29	3.10	33.00	10.68
15	>360	$C_{13}H_7N_7OS$	50.48	2.26	31.71	10.35
	(75)	309	50.30	2.22	31.61	10.27
16	>360	$C_{12}H_6N_8OS$	46.45	1.93	36.12	10.32
	(69)	310	46.50	1.90	36.21	10.36
17	120	$C_{13}H_7N_7OS_2$	45.74	2.05	28.73	18.76
	(90)	341	45.61	2.00	28.66	18.59
18	150	$C_{13}H_9N_5OS_2$	49.52	2.85	22.22	20.31
	(78)	315	49.60	2.86	22.16	20.22
19	240	$C_{16}H_{13}N_5O_3S_2 \\$	49.61	3.35	18.08	16.53
	(83)	387	49.44	3.32	18.00	16.41

^aCl (calc. 9.95, found 9.88%).

Table 2. Spectroscopic Data of Compounds 3-19

spectroscopic data of compounds **3-19** are listed in Tables 1 and 2.

3-Amino-2-ethoxycarbonylthieno[2,3-b]quinoxaline (1) 2-Ethoxycarbonylthieno[2,3-b]quinoxaline-3-diazonium chloride (2). Compounds 1 and 2 were prepared according to the literature, mp 145 and 258 °C, respectively; Lit [15].

2-Ethoxycarbonylthieno[2,3-b]quinoxaline-3-sulfonylchloride (3). To a solution of compound **2** (0.01 mol) in glacial acetic acid (30 mL) was added cupric chloride (0.015 mol), a slow rate of SO₂ was passed through this solution for 1 hr, stand the reaction mixture for 2 h at RT and the mixture was poured into water. The solid separated was filtered and crystallized from acetic acid as greenish crystals.

Ethyl 3-(N-methyl-N-phenyl)sulfamoylthieno[2,3-b]quinoxaline-2-carboxylate (4). A mixture of 3 (0.01 mol) and *N*-methylaniline (0.01 mol) in absolute ethanol was refluxed for 3 h, after cooling. The solid product thus formed was recrystallized from ethanol as red crystals.

3-(N-Methyl-N-phenyl)sulfamoylthieno[2,3-b]quinoxaline-2-carboxylic acid (5). A sample of **4** (0.5 g) in 10% KOH (25 mL) was heated under reflux for 2 h, then allowed to cool, neutralized with dilute HCl. The solid product thus formed was recrystallized from ethanol as red crystals.

3-Amino-2-thieno[2,3-b]quinoxaline-2-carboxylic acid hydrazide (6). Compound **6** was prepared according to the literature m.p. 305-306 °C; Lit [14].

3-Amino-2-thieno[2,3-b]quinoxaline-2-carboazide (7). To a mixture of **6** (0.01 mol) and acetic acid (15 mL) was added sodium nitrite solution (14 mL, 0.01 mol) at 0° with stirring for 30 min and the resulting solid was filtered and recrystallized from ethanol as yellow crystals.

Imidazo[4',5':4,5]thieno[2,3-b]quinoxalin-2(1H, 3H)-one (8). A sample of 7 (0.5 g) in dry xylene (15 mL) was heated under reflux for 30 min, then allowed to cool. The solid product thus formed was recrystallized from ethanol as yellow crystals.

Compound No.	IR $(v \mathrm{cm}^{-1}) / {}^{1}\mathrm{H}$ NMR δ (ppm)				
3	1720 (CO), 1620 (C=N); (DMSO-d ₆): δ 1.3-1.45 (t, 3H, CH ₃) 4.2-4.4 (q, 2H, CH ₂), 7.3-7.8 (m, 4H, Ar-H).				
4	1730 (CO), 1610 (C=N); (DMSO-d ₆): δ 1.3-1.4 (t, 3H, CH ₃), 3.2 (s, 3H, CH ₃), 4.2-4.4 (q, 2H, CH ₂), 7.4-7.9 (m, 9H, Ar-H).				
5	1740 (CO), 1630 (C=N); (CF ₃ COOD): δ 3.2 (s, 3H, CH ₃), 7.4-8.1 (m, 9H, Ar-H).				
7	3380 (NH ₂), 2180 (N ₃), 1730 (N ₃ -CO); (DMSO-d ₆): δ 6.2 (s, 2H, NH ₂), 7.5-8.0 (m, 4H, Ar-H).				
8	3210, 3185 (NH), 1670 (CO); (CDCl ₃): δ 7.5-8.3 (m, 4H, Ar-H), 9.2,10.3 (s, 2H, NH).				
9	3340 (NH ₂), 1680 (C=O); (DMSO-d ₆): δ 6.3 (s, 2H, NH ₂), 7.5-7.8 (m, 4H, Ar-H), 9.5 (s, 1H, CH).				
10	3420 (NH ₂), 2220 (CN), 1700 (C=O); (DMSO-d ₆): δ 6.2 (s, 2H, NH ₂), 7.4-7.9 (m, 9H, Ar-H).				
11	2960 (CH, aliph.), 1690 (CO), 1620 (C=N).				
12	1700 (CO) 1640 (C=N); (DMSO-d ₆): δ 6.1, 6.3 (2d, 4H, CH-pyrrole), 7.6-8.2 (m, 4H, Ar-H), 9.4 (s, 1H, CH).				
13	3430 (NH2), 1230, 1060 (SH); (DMSO-d6): 8 6.24 (s, 2H, NH2), 7.5-8.2 (m, 4H, Ar-H).				
14	3220, 3500 (NH, NH ₂), 1630 (C=N); (CF ₃ COOD): δ7.5-7.95 (m, 4H, Ar-H).				
15	3430 (NH2); (DMSO-d6): 8 6.15 (s, 2H, NH2), 7.5-8.2 (m, 4H, Ar-H), 9.4 (s, 1H, CH).				
16	3400 (NH ₂), 1620 (C=N); (CF ₃ COOD): δ 7.5-7.95 (m, 4H, Ar-H).				
17	3400 (NH2), 1220, 1050 (SH); (DMSO-d6): 8 6.25 (s, 2H, NH2), 7.45-8.0 (m, 4H, Ar-H).				
18	3410 (NH ₂); (CDCl ₃): δ 3.3 (s, 3H, CH ₃), 6.1 (s, 2H, NH ₂) 7.6-8.2 (m, 4H, Ar-H)				
19	$3420 \ (NH_2), 2930 \ (CH, aliph.), 1720 \ (C=O); \ (CDCl_3): \\ \delta 1.4-1.6 \ (t, 3H, CH_3), 4.1-4.25 \ (q, 2H, CH_2), 6.2 \ (s, 2H, NH_2), 7.4-8.1 \ (m, 4H, Ar-H).$				

570 Bull. Korean Chem. Soc. 2002, Vol. 23, No. 4

3-Amino-pyrimido[4',5':4,5]thieno[2,3-b]quinoxalin-4(2H)-one (9). To a mixture of **6** (0.015 mol) and triethyl orthoformate (5 mL) in methanol (30 mL), few drops of acetic acid were added. The mixture was heated under reflux for 5 h, then allowed to cool. The solid product thus formed was recrystallized from ethanol as red crystals.

2-Amino-3-cyano-4-Phenylpyridazino[2'',3'':1',2']pyrimido[4',5':4,5]thieno[2,3-b]quinoxalin-13-one (10). A solution of 9 (0.01 mol), arylidene malonodinitrile (0.01 mol) in absolute ethanol (10 mL) and (1 mL) of triethylamine, was stirred at reflux for 2 h. After cooling the solid product was filtered, washed with cool ethanol and recrystallized from ethanol as pale yellow crystals.

3-(2-Furfurilidene)aminopyrimido[4',5':4,5]thieno[2,3-b]quinoxalin-4(3H)-one (11). A solution of compound **9** (0.01 mol) and furfural (0.015 mol) in glacial acetic acid (40 mL) was heated at 80° for 4 h. After cooling the separated solid was filtered and crystallized from acetic acid as browinsh crystals.

3-(1-Pyrryl)pyrimido[4',5':4,5]thieno[2,3-b]quinoxalin-4(3H)-one (12). To a solution of compound **9** (0.01 mol) in glacial acetic acid (20 mL) was added dimethoxy-tetrahydrofuran (0.015 mol), and the mixture was refluxed, stirred for 2 h, evaporated under redused pressure, the residue was crystallized from ethanol/acetic acid as redish crystals.

3-Amino-2-(5-sulfanyl-1,3,4-oxadiazol-2-yl)thieno[2,3-b]quinoxaline (13). A mixture of **6** (0.01 mol) and carbon disulfide (5 mL) in pyridene (25 mL) was refluxed on steam bath for 8 h, then allowed to cool. The solid product thus formed was recrystallized from ethanol as red crystals.

3-Amino-2-(5-hydrazino-1,3,4-oxadiazol-2-yl)thieno[2,3-b]quinoxaline (14). A mixture of **13** (0.01 mol) and hydrazine hydrate (6 mL) was refluxed in ethanol (35 mL) for (5 h, or until evoluation of H_2S cease) then allowed to cool, the yellow precipitate was filtered off and recrystallized from ethanol.

3-Amino-2-(1,2,4-triazolo[3,4-b][1,3,4]oxadiazol-6-yl)thieno[2,3-b]quinoxaline (15). To a mixture of **14** (0.015 mol) and triethyl orthoformate (3 mL) in methanol (20 mL), few drops of acetic acid were added. The mixture was heated under reflux for 3 h, then allowed to cool. The solid product thus formed was recrystallized from acetic acid as pale red crystals.

3-Amino-2-(tetrazolo[4,5-b][1,3,4]oxadiazol-6-yl)thieno-[**2,3-b]quinoxaline** (**16**). To a solution of **14** (0.01 mol) in acetic acid (25 mL) was added dropwise sodium nitrite solution (14 mL, 0.01 mol) at 0° with stirring for 2 h. The resulting solid was filtered and recrystallized from ethanol as yellowish crystals.

3-Amino-2-(3-sulfanyl-1,2,4-triazolo[3,4-b]oxadiazol-6-yl)thieno[2,3-b]quinoxaline (17). A mixture of **14** (0.01 mol) and carbon disulfide (5 mL) in pyridine (35 mL) was refluxed on steam bath for 6 h, then allowed to cool. The solid product thus formed was recrystallized from acetic acid as pale red crystals.

3-Amino-2-(5-methylthio-1,3,4-oxadiazol-2-yl)thieno[2,3-b]quinoxaline (18). A mixture of **13** (0.01 mol), methyl iodide (0.01 mol) and anhydrous sodium acetate (5 g) in ethanol (40 mL) was refluxed for 2 h, poured onto cold water. The solid obtained was filtered off and recrystallized from ethanol as pale yellow crystals.

3-Amino-2-(5-ethylacetatethio-1,3,4-oxadiazol-2-yl)thieno-[**2,3-b]quinoxaline (19)**. A mixture of **13** (0.01 mol), ethyl chloroacetate (0.01 mol) and anhydrous sodium acetate (5 g) in ethanol (30 mL) was refluxed for 2 h, poured onto cold water. The solid obtained was filtered off and recrystallized from ethanol as pale yellow crystals.

References

- Zhu, Z.; Saluja, S.; Drach, C. J.; Townsend, L. P. J. of the Chinese Chem. Soc. 1988, 45(4), 465.
- (a) Makino, K.; Kim, H. S.; Yoshihisa, K. J. Heterocycl. Chem. 1998, 35, 321.
 (b) Makino, K.; Kim, H. S.; Yoshihisa, K. J. Heterocycl. Chem. 1998, 35, 489.
- Sainz, Y.; Montoya, M. E.; Martinez, F. J.; Ortega, M. A.; Lopez, A.; Monge, A. Arzniem. Forsch. 1999, 49, 55. [Chem. Abstr. 1999, 130, 3827P].
- 4. Mange, A.; Palop, J. A.; Urbasos, I.; Fernandez-Alvarez, E. J. *Heterocycl. Chem.* **1989**, *26*, 1623.
- 5. Yoo, H. W.; Yun-Sil, L.; Suh, M. E.; Kim, D. J.; Park, S. W. Arch. *Pharm.* **1998**, *331*, 10331.
- 6. Gozyo, S.; Kenzi, M.; Yoshihisa, K. Heterocycles 1988, 27, 2481.
- Kaneko, C.; Katagiri, S. (Asahi Glass Co.Ltd), Japan Kokai Tokkyo Koho Jp. (patent) **1988**, *62*, 207, 264. [*Chem. Abstr.* **1988**, *109*, 231061f].
- Hiramatsu, T.; Azuma, S.; Nakagawa, K.; Ichikawa, Y. (Teijin Ltd.) Japan Kokai Tokkyo Koho Jp. (patent), **1988**, *62*, 163, 263, [*Chem. Abstr.* **1988**, *109*, 73473k].
- Miguel, A. O.; Maria, J. M.; Francisco, J. M.; Yolanda, S.; Maria, E. M.; Adele, L. C.; Antonio, M. *Eur. J. Med. Chem. Chim. Ther.* 2000, *35*, 121.
- El-Ashry, E. S. H.; Abdel-Rahman, A. A. H.; Rashed, N.; Rasheed, H. A. *Pharmazie* 1999, 54(12), 893.
- 11. El-Hawash, S. A.; Habib, N. S.; Fanaki, N. H. *Pharmazie* **1999**, 54, 808.
- Bindumhavan, V.; Prabhakar, B. C.; Kumar, C. D.; John, D. N.; Helmut, R. R. (Hoechst India Ltd.) Indian IN 167,425 (patent) 1993, [*Chem. Abstr.* 1993, *119*, 117279q].
- 13. Moustafa, O. S. Phosphorus, Sulfur and Silicon 1997, 131, 49.
- Badr, M. Z. A.; Mahgoub, S. A.; Moustafa, O. S. J. Chem. Soc. Pakestan 1993, 15, 264.
- Badr, M. Z. A.; Mahgoub, S. A.; Moustafa, O. S. Phosphorus, Sulfur and Silicon 1993, 79, 477.
- 16. Moustafa, O. S. Phosphorus, Sulfur and Silicon 1999, 155, 235.
- 17. Moustafa, O. S. J. of the Chinese Chem. Soc. 2000, 47(2), 351.
- Geies, A. A.; El-Deen, A. M. K.; Moustafa, O. S. *Pharmazie* 1996, 52(6), 437.
- Moustafa, O. S.; Badr, M. Z. A.; Kamel, E. M. *Pharmazie* 2000, 55(12), 896.