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By use of cluster orbitals, analytic solutions of finite face-centered cubic clusters are obtained. Taking interactions
between up to the second nearest neighbors into account, the forms of all the elements of the Hamiltonian matrix
are found explicitly within Hiickel approximation. By adopting Da point group to the cluster, the matrix is simplified.
We assume that the cluster orbitals can mix together only when their state indices are indentical. It is then possible
to calculate various physical properties of face-centered cubic metal clusters and example are shown for palladium
clusters. The results show that density of states and projected density of states are similar, qualitatively, with those

obtained by extended Hiickel calculation.

Introduction

There have been some efforts to find analytic solutions
(energies and wave functions) of finite metal clusters.!™®
These analytic methods have an advantage that the limitation
on the size of a cluster is eliminated, so they are very useful
for treating large clusters whose solutions cannot be obtained
by other methods. Messmer' obtained analytic solutions of
simple cubic (s.c.) metal clusters, taking interactions between
only the nearest neighbors into account, within Hiickel
scheme. He allowed only atomic s orbital on each atom. Bilek
and Kadura®? obtained expressions for energies and wave
functions of face-centered cubic (f.c.c.) clusters. They recog-
nized an s.c. cluster as two interpenetrated fc.c. clusters
and treated interactions between only the nearest neighbors
allowing only s orbital per site.

Even if atomic orbitals other than s are allowed per site,
analytic solutions can be obtained as long as one type of
orbitals are allowed. We solved this problem for s.c., fc.c,
and b.c.c. (body-centered cubic) clusters.®> We obtained solu-
tions by considering interactions between up to the fourth
nearest neighbors for s.c. (these correspond to the second
nearest neighbors for f.c.c. and b.c.c.). Another approach is
that of Salem* %, who discussed the mixing of cluster orbitals
of one s-type and of five d-types by taking interactions be-
tween only the nearest neighbors into account.

In the present work, we treat f.c.c. metal clusters and ex-
amine mixing of nine types of cluster orbitals — one s-type,
three p-types, and five d-types — within Hiickel scheme in-
cluding interactions between up to the second nearest (the
fourth in case of s.c.) neighbors. First of all, the Hamiltonian
matrix is simplified by adopting point group Dy, to the clus-
ter. With Hiickel approximation we can find all the elements
of the Hamiltonian matrix explicitly. This means that it is
possible to know how the interactions between any pairs
of cluster orbitals are expressed. By diagonalizing this Hami-
Itonian matrix numerically, energies and wave functions of
the cluster can be obtained. However, our goal is not to
perform this calculation, but to obtain analytic solutions of
the cluster. For this purpose, we assume that cluster orbitals
can mix together only if the state indices of them are identi-

cal. This assumption is based on the forms of the analytic
solutions for infinite crystals obtained by Slater and Koster’.
From this assumption, we can make much simplification and
final (numerical) calculation is made easy. We obtain density
of states (DOS) and projected density of states (PDOS) of
d orbitals (DOS projected on d-types of cluster orbitals; it
is equivalent to DOS projected on atomic d orbitals, if atomic
orbitals are used as a basis) of f.c.c. palladium (Pd) clusters
using our scheme. The results are compared with those ob-
tained by extended Hiickel (EH) calculation, which show
qualitative similarities. However, a flaw is that the mixings
of cluster orbitals are not included fully, that is, off-diagonal
submatrices are neglected in calculation.

D2, Cluster

We define a cluster orbital of ¢-type (¢ is one of the nine
atomic orbitals — s, x, y, 2z x*—y% 2%, zy, xz, and yz; note,
for instance, that x denotes atomic p, orbital) of a finite f.c.c.
metal cluster with rectangular parallelepiped shape, whose
master (simple) cubic cluster has N, Np, and N¢ atoms along
x-, y-, and z-axes, as follows:?
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i, m, and n are integers between 1 and N, Nj, and N,
respectively, and they must satisfy the condition® &+n+¢
<3n/2. This means that the number of cluster orbitals of
o-type equals to the number of atoms of the fc.c. cluster.
We call (, m, n) a state index. The indices ¢, j, and & of
the summation run from 1 to N4, N, and N, respectively,
and they lable the atom. The asterisk(s*) on the summation
denotes the restriction of i+j+k=odd, for atoms lie only
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Figure 1. (a) The form of Hamiltonian matrix composed of ele-
ments denoting interactions between cluster orbitals. Blocks
marked with “D” are diagonal submatrices and the others off-
diagonal submatrices. Each block is made up of 81(9X9) eleme-
nts. (b) The form of one of the blocks of (a) representing interac-
tions between nine cluster orbitals.with a state index ¢, m, n)
and those with (. m’, n"). Each square corresponds to an ele-
ment of this submatrix. For example, the element marked with
“o7 is <y | HY | I

on these sites in case of an fc.c. cluster (With the same
reason, there is no loss of generality if we assume that :
+j+k=even).

Now from these cluster orbitals we can set up Hamiltonian
matrix (Figure 1) composed of submatries which denote inte-
ractions between nine cluster orbitals with a state index (,
m, n) and those with (', m’, n'). So, our task is to diagon-
alize this Hamiltonian matrix and to obtain the eigenvalues
(energies) and eigenvectors (wave functions) of the cluster.
Of course, the elements of the matrix should be known first.
Before doing this, however, we allow the cluster to belong
to a point group and from the symmetry conditions we will
simplify the elements of the matrix, e, make many elements
vanish.

We assume that N4, N, and N are all odd integers, and
that they are distinct. Then we can assign the point group
D, to this f.c.c. cluster. (If Ns, Np, and N¢ are all odd, each
axis — x-, y-, and z-axes — is Cz-axis and much simplification
can be made from the symmetry conditions of each cluster
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Figure 2. Schematic diagrams for finding the characters of
w22 with (N4, Na, No)=(7, 5, 3) under eight symmetry operat-
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ions of point group Dy. (a) Form of this cluster orbital, Ny Z

) . 7
b:G, 7 k) [sin—f—sin L;—sin an] The upper figure corresponds
to the upper layer (¢=1) of the cluster, the middle figure the
middle layer (¢=2), and the bottom figure the bottom layer (k=
3). Since this cluster orbital is a linear combination of atomic
orbitals, the coefficients of atomic orbitals may be zero, and these
atoms are indicated by dots. By eight symmetry operations this
orbital can be either unchanged (for E, Ci(z), o(z), and o(¥2))
or change all the signs of each lobe (for the others) as (b). The
characters are +1 or —1 for (a) and (b), respectively.

orbital. Besides, if the point group is Du (Ny=Nz=Nc) or
Ox(Na=Np=N(), many degeneracies which may blur the ge-
neral feature of the matrix can arise.)

Now, we can find the irreducible representation to which
each cluster orbital belongs, from the characters of each clus-
ter orbital under eight symmetry operations of point group
Dy. Figure 2, for example, shows schematic diagrams for
how to obtain the characters of .22 with (N4, Np, Nc)=(7,
5, 3) under eight symmetry operations of point group Du.
This cluster orbital is a linear combination of atomic p, orbi-
tals and the form is given in Figure 2(a). By four symmetry
operations [Cy(x), Cz(¥), i, and o(xy)], the cluster orbital is
changed to the form shown in Figure 2(b), and it is un-
changed by the other four operations of the group. So the
characters are +1 for E, Cu2), o(xz), and o(yz), and —1
for Cy(x), Cx(y), ¢, and o(xy). Generally, with some algebraic
manipulations (for detailed derivations, see Appendices 1)
one can find that, for a given state index (, m, »), the chara-
cter of a cluster orbital under a certain symmetry operation
can be expressed as a product of two factors, one of which
results from the change of the signs of atomic orbitals com-
prising the cluster orbital, the other from the conditions of
the parities of the state index. Table 1 shows these two
factors of each type of cluster orbital under each symmetry
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Table 1. Two Factors Comprising the Characters of Each Type
of Cluster Orbitals under Each Symmetry Operation

Dy E Gl G Ck) t olxy) o(xz) o(y2)
s + o+ o+ o+ o+ o+ o+ 4+
b + -+ -+ o+ -
b, + + - -+ = 4
. + o+ - = -+ o+
dey + + + + 4+ 4+ + 4+
dz + o+ 4+ o+ o+ o+ o+ o+
ds T S
d. + + -+ - 4+ -
dy + - =+ + - +

I+m
Factors# 2 I+m [+n m+n n+l m+1 [/+1
+n+1

eFactors are the exponents with the base —1, ie., if the factor
is I+m, then this means (—1¥'". Products of this factor and
the sign of each row of the column to which factor belongs are
the characters.

Table 2. The Irreducible Representations to Which Cluster Or-
bitals Belong According to Their Parities

Dy ece  eceo” eoe €00  oee 0e0 00 000
s Al By By Ba By B Bu A
px B?g BZu Blu Ag Au Blg B;)g Bgu
by By Ba A, By B A, Bs Ba
b: By, A Bu By Bu By A By
d2-2 A, By By Bu By Ba Bu A
d? A, By Bx Ba By B. Bun A
dy B. A By Ba By Bx, Al By
de B By A Bu By A, B, By
d,, B By By A A, B. Ba By

%o means that ! is even, m is even, and #n is odd. *Note that
Vs Wi2-,2, and y2 belong to the same irreducible representations
if their parities are same, t.e., if they lie in the same column.

operation. The characters of each cluster orbital depend on
the conditions of the parities of the state index of them.
The parity of a whole number is what makes us know whe-
ther the number is even or odd. Since each state index is
composed of three whole numbers, there can be eight types
of parities, say /=even, m =even, and n=odd. From this table,
one finds that cluster orbitals with some parities belong to
one of the eight irreducible representations of point group
Dy. These representations are given Table 2.

Diagonal Elements

From the facts that each cluster orbital belongs to one
of the eight irreducible representations of point group Da,
and that the cluster orbitals belonging to different irreducible
representations do not mix together,? Hamiltonian matrix can
be simplified, ie., many terms vanish due to the symmetry
conditions. We set up Hamiltonian matrix composed of 9X9
submatrices which denote the mixings between nine cluster
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Figure 3. The form of diagonal submatrices marked with “D”
in Figure 1(a). Only elements (and a block) marked with “»”
do not vanish by symmetry conditions of the cluster.

orbitals (say v, w.2-,2, .2, -, etc.) with (, m, n) and those
with (', m’, n'). The size of this Hamiltonian matrix is
9N X 9N where N is the number of metal atoms in the clus-
ter. First, we will examine the mixing of cluster orbitals
which have the same (, m, n)'s. We call those submatrices
“dijagonal submatrices” of the full matrix.

Diagonal submatrices are composed of elements represent-
ing interactions between cluster orbitals whose state indices
are indentical, so their parities are necessarily identical. This
means that they lie in the same column of Table 2. The
table tells that only three cluster orbitals (y, w2 ,2, and
v.2) belong to the same irreducible representation and that
the representations the others belong to are different from
each other. Therefore, only these three cluster orbitals can
mix together and other mixings do not occur. Figure 3 shows
the form of this diagonal submatrix.

It is possible to calculate each element of the diagonal
submatrices within Hiickel approximation including interac-
tions between up to the second nearest neighbors. (2%/2%),
for example, can be calculated as follows:

(zz/z?_)E(Wi'E'" | HY | Wi'f")
=N¢ z (sin®7 € sin®j n sin®k Q)C2%G, 7, k) | HT | 2°G, , &)

Lk

+N.N.+8.N.,
=Ez2 2000)+N.N. +8.N.,, o))

where Ez2 2(000) denotes the Coulomb integral of atomic 4,2
orbital, ie.,

E2 20000=4d2G, j, k) | H | d2G, j. k). (6

In Eq. (4) and from now on, the terms representing inter-
actions between the nearest neighbors, and those represen-
ting interactions between the second nearest neighbors are
shortended to N.N. and S.MN., respectively. N.N. and S.N.
can be calculated with some algebra (see Appendices 2 and
3) as follows:

N.N=4E_2 2(110) cosécosn + 4E2 2(011) cosncos$



66 Bull. Korean Chem. Soc, Vol. 14, No. 1, 1993 Juhyeok Lee et al.

Table 3. Elements of Diagonal Submatrices for a Given State Index

(/5) =E.(000) +4 E; ,(110) [OOS€“cosn+cosn cos{ + cos{ cost] +2 E, ,(200) [cos2E+ cos2n + cos2(] + 4 E, ,(200) [ AS,"‘JF 51 +N5i—“%
J) ]
¥ sing ]

Nc+1

(P—y/a"—y ) =Ez_ 2 2 2(000) +4 E2_2 2 2(110) cost cosn+4 E2_,2,2 2(011) Lcos§ cos{+conn cost]+2 E2_ 2 2_,2(200) [cos2E

sin® sin’n ] _sin®¢
+cos2n]+2Ez2_z2 2 2(002) cos2{+4 E2_2 2_,2(200) [r 1 PNy L) T 4B (00

(2/2") =E2 2(000) +4 E2 2(110) cos cosn+4 E2 2(011)[cost cos{ + cosn cos¢] +2 E2 2(200) [cos2E+ cos2n]+ 2 E.2 2(002) cos2
+4E2 2200 :,:‘fl + ;":L“l |+4E2 20002 ;“fl

(0y/2y) = Esy, ,(000) + 4 E,,, ,,(110) cosé cosn +4 E,, ,(011) [ cost cos{ + cosn cos{]+ 2 E,,, ,(200) [cos2E+cos2n]+ 2 E,, ,(002) cos2C
(200 [TVS_:% " ASI;nJrnl J+4£, o002 §Z"+C1

(12/22) =Ey, 5(000) +4 E,;, 5,(110) cost cost +4 Ey, o (011)[cost cosn +cosn cost] +2 £, ,(200) [cos2€ + cos2(] +2 E,, ,(002) cos2n
4B (200 [Iszrfl * 13"3}1 ] T4Es5.(002) 132"1"1

(2/52) = Ez.5(000) +4 Ey, ,(110) cosn cosG+4 E,, 5, (011) [cosE cosn + cosE cost]+2 Ey, ,(200) [cos2n + cos2(]+2 B, (002) cos2E
4By (200 | 1\511:11 + ;;Tl [ +4E, (002 ;:"fl

(/) = :(000) +4 E; .(110) [cosE cosn+cost cos¢]+4 E, .(011) cosn cost +2 E, ,(200) cos2E+2 E, ,(002) [cos2n + cos2C]

_sin® [ sin’n sin’ ]
+4E, .(200) ——— N1 + 4 E, ,(002) Notl +Nc+1

O/y) =E, ,(000) +4 E, ,(110) [cos§ cosn + cosn cos{] +4 E, (011) cos cosG+2 E; ,(200) cos2n+ 2 E, ,(002) [cos2€ + cos2(]
sin’p sin | sin¥
+4E,(200) o +H4E,(002) [N,,+1 Nc+1]
(#/2) =E, (000) +4 E, ,(110) [cos{ cost+cosn cos¢]+4 E, .(011) cost cosn+2 E;, ,(200) cos26+2 E, ,(002) [cos2E+cos2n ]

sin C sin% sin’n ]
HAE(200) g + 4B (00) [0S ST

. .
(/2 —y") = (" —y"/s) =4 E, 2-2(011) [ - cost cos{ + cosn cos¢] +2 E, 2,2(200) [cos2E— cos2n]+4 E, ,2_,2(200) [‘AS,%_%‘ - T\S/%]
B

(s/2°)*=(2%/s) =4 E, 2(110)" cos§ cosn +4 E, 2(011) [cosE cos{ + cosn cos¢]+2 E, 2(200) [ cos2E+ cos2n]+2 E, 2(200) cos2{

sin’€ sin’n ] sin’¢
+4E, 2(200) [_—N,,ﬂ PRy 4B 200 S

in2
(*—y%2") = (/2" —y*) =4 E2 2_2(011) [ — cosE cos{ + cosn cost ] +2 E2 2-,2(200) [cos2E— cos2n]+4 Ezz 2_,2(200) [‘%% ﬁs;%]

In mn

% m, and { are defined by &= N+l "V Npr1 4SS N +1 - See Eq. (3) of text. *(s/2)= <y\™|HT|y2">. ‘E,2(110)=
<sG, i, R)IHTd2(i+1, j+1, k)>.
+4E 2 2(101) cosé cos (6a) +2E2 2002) cos2C+4E2 2(002) ]\S[lf;_l ’ (6b)
and where
S.N.=2E.2 2(200) cos2§+4Ezzz(200)1—3ﬂf1— Ez 2010)={d2G, j, k) | HT | d2i+1, j+1, k)) (7a)
. and
+2E.2 2(020) cos2n + 4E:2 2(020)- ST

Nz+1 E2 2200)=<d2G, j, k) | H? | d2G+2, 5, k).  (7b)
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Since Ez2 2(011)=E_2 2(101) and E_2 2(200)=E_2 ,2(020), (z%/2)
can be written in more compact form as

@/2)=E2 2000)+4E 2 2(110) cost cosn
+4E2 2(011)[ cosé cosC+ cosn cos{]
+2E 2 2(200) cos2& + cos2n ]+ 2E,2 2(002) cos2(

sin®é sin®n sin’¢
+4”N’Z-'z(’z‘)‘))[zv,nq +NB+1]+4E,2,,2(002)NC+1 :

6))

The other elements can be calculated similarly and they are
shown in Table 3. The terms including (N,+ 1), (Nzg+1)"},
and (Nc+1)7! arise from the surface atoms and they vanish
as Ny, Ng, and N¢ go to infinity, i.e, as the size of the cluster
increases infinitely.

The elements of the off-diagonal submatrices (interactions
between cluster orbitals with different state indices) can be
found with similar method. However, their forms are not
so simple as the diagonal ones. We will discuss these in
next section. We will see that they also contain energy para-
meters, say E; (110), as the elements of the diagonal subma-
trices. These energy parameters may be obtained from the
extended Hickel (EH) calculation. So, it is possible to obtain
numerical values of all the elements of the Hamiltonian ma-
trix. By numerical diagonalization method, one can find en-
ergies and wave functions of the cluster. However, in prac-
tice, this numerical diagonalization is restricted by the size
of the matrix.

Our goal is not to diagonalize this Hamiltonian matrix
numerically, but to obtain analytic solutions of the cluster.
Even if the values of all the elements are known analytically,
it is very difficult — nearly impossible — to diagonalize this
matrix analytically. So, one needs some approximations to
find eigenvalues (and eigenvectors) of the cluster. In case
of infinite crystals, a wave vector k is defined and this is
a “good” quantum number, so Bloch sums with different
wave vectors do not mix with each other. Bloch sums are
the counterparts of the cluster orbitals. Similarly the wave
vectors are the counterparts of the state indices. So we may
reasonably expect that the terms representing the mixing
between cluster orbitals with different state indices will va-
nish as the size of the cluster increases. Keeping this in
mind, we assume that mixing between cluster orbitals with
different state indices do not occur in all cases. This means
that elements obtained in this section are only nonvanishing
elements, that is, the Hamiltonian matrix is composed of
only N diagonal blocks, whose size is 9X9. Now our task
is to diagonalize these 9X9 submatrices for N times. These
diagonalizations are performed numerically. In fact, each of
these submatrices is also decomposed into a 3X3 block and
6 diagonal elements. So only diagonalizations (N times) of
these 3X3 blocks are needed (Figure 3). Even if the size
of the cluster (the number of metal atoms in the cluster)
increases, there is no problem, for only the number of calcu-
lations of these diagonalizations increases.

We carry out these calculations, on the assumption given
above, for palladium clusters. The energy parameters are
obtained from EH calculations done previously in our lab®
Figure 4 shows density of states (DOS) and projected DOS
(PDOS) of d orbitals (shaded areas) of Pd clusters. The clus-
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Figure 4. Curves denoting DOS and PDOS of d orbitals (shaded
areas) of Pds; and Pdyg; clusters. (a) DOS and PDOS of Pds,
cluster by EH calculation, (b) by our method taking interactions
between only the nearest neighbors into account, (c) up to the
second nearest neighbors, and (d) for Pdy cluster with our
method up to the second nearest neighbors. Note that the scale
of ordinate is arbitrary. Calculated HOMO levels are (a) —8.84,
(b) —853, (c) —8.50, and (d) —8.34 eV,

ters used for calculations are Pds; for (a)-(c), and Pd,g; for
(d). In case of Pds; cluster, two methods are used for calcula-
tions, one [Figure 4(a)] is EH and the other [Figure 4(b)
and (c)] is our scheme. Curves shown in Figure 4(b) is those
of DOS and PDOS of Pds; cluster when interactions between
only the nearest neighbors are considered and (c) those up
to the second nearest neighbors. From these, we can see
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that the forms of the curves of DOS and PDOS by our me-
thod are similar, qualitatively, with those obtained by EH
calculation. A sharp falls above 0 eV for (b) and (c) are thou-
ght to originate from the fact that we took only diagonal
submatrices into account. In a diagonal submatrix, terms de-
noting interactions between p orbitals appear only on diago-
nal positions. This means that the mixings of p orbitals are
not included fully. However, since HOMO of the cluster lies
about —8~—9 eV [HOMO levels are calculated as (a)
—8.84, (b) —853, (c) —8.50, and (d) —8.34 eV], these or-
bitals are not significant. From (b) and (c), we know that
there are few problems if interactions between the second
nearest neighbors are neglected. The matter will be men-
tioned in next section. Since our approach is analytic, the
limitation on the size of the cluster is eliminated. As an
example we carry out calculations for Pd,y; cluster. For this
cluster, the size of the Hamiltonian matrix is 9,657X9,657
and direct numerical diagonalization of this matrix is second
to impossible. However, we can do it, though approximately,
and the results are shown in Figure 4(d).

In next section, the forms of the elements of off-diagonal
submatrices excluded in this section will be discussed. We
will see that the forms of any elements can be known expli-
citly. However, solving the full matrix analytically is impossi-
ble, so we will not include these off-diagonal elements in
calculation.

Mixing of Cluster Orbitals with
Different State Indices

We have shown that each cluster orbital with some parities
belongs to one of the eight irreducible representations of
point group Dy, (Table 2). By rearranging Table 2, cluster
orbitals (with some parities) belonging to the same irreduci-
ble representations can be collected. These are given in Ta-
ble 4. From the symmetry conditions, it follows that the clus-
ter orbitals in the same row mix together and that those
in different rows do not mix. A very careful examination
of this table may lead to the fact that there are some rules
on the parity conditions for cluster orbitals belonging to the
same irreducible representation. Say, in all of the eight rows,
only the parities of | are changed (even—odd, odd—even) if
we move from the first column to the second one. This
means that the cluster orbitals of s-type and those of x-type
mix together only if their parities of / are different. Rules
of this kind are seen in all pairs of columns. From these,
one finds some rules on the parity conditions of the mixing
of cluster orbitals. That is,

Qylm | H | i’ > 20,

if the following parity conditions are satisfied: (i) the parities
of | and !' should be different if x’s appear odd times in
both ¢ and ¢’ (for instance, the number of x’s is three for
(x*—y*/x), and two for (x/x), etc.); (ii) for y and 2, same condi-
tions hold on the parities of m and m’, and » and »'; and
(iii) the corresponding parities should be same when the
numbers of occurrence of x, y, or z are even. These rules
hold for the above example — s and x.

How can we explain the above rules? For the simplicity
of discussion, interactions between only the nearest neigh-
bors are treated. (We showed that, for palladium, there is
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Table 4. Parity Conditions for Each Type of Cluster Orbitals
to Belong to the Same Irreducible Representations

Dy s x y z -y 2 » xz  w

A, 000 €00 0e0 008 000 000 €e0 eoe oee
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By oee eee 00e 00 Oee Oee €eoe €eo 000
A, eee oee eoe ee0 eee eee 00€ 0O €00
B, 00€e e0e 0ee 000 00e 00€e e€ee €00 0eo
Ba, 00 ee0 000 O0ee 0e0 O0eo €00 eee  0oe
Ba. €00 000 €e0 e0e €00 €00 0eo o0oe  eee

(a) ()

Figure 5. Four cases on the relative signs of the resonance
integrals between as s orbital and (a) s, (b) p., (©) dy,, (d) p,
orbitals, each pair being centered on the positions of the nearest
neighbors. Note that the signs are not absolute ones, but relative
ones by setting the sign of E, ,/(110) positive.

not much difference when we neglect interactions between
.he second nearest neighbors.) If ¢ and ¢' are same, four
resonance integrals on a plane, say E,.(110), E, .(110),
E. (110), and E,.(110), are identical. In general, however,
this is not the case and four cases arise for resonance in-
tegrals, for example, on xy-plane (Figure 5). For these four
cases, the terms denoting interactions between the nearest
neighbors on xy-plane can be calculated. For (a),

xy-plane

Gy L HE |y

the nearest neighbors
=NE, (110) Z’; (sinzé sinm sinkQ{ [sin@ + 1E sin(+ 1n’ sink(’]
L)
+ {sin(i + )& sin(f — )n'sinkl’ ]+ [sin(f — 1)¢’ sinG + 1)n’
X sink{' ]+ [sin(i — 1)&' sin(— 1)n’ sink{']}

= NyE, (110) 3 (sini€ sinjn sinkQLsinG+ DE +sinG— DE'
Lk
X [sin(f+ 1)n’ +sin(G — 1)n'] sink{’
=4NE, (110) cos&’ cosn’

X Z,, (sing€ sinz&')sinym sinyn’)(sinkg sinkl’). ©
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For (b),

xy-plane

<Wlmn HY I l’m n' >

the nearest neighbors

=NE ,(110) Z (sinz€ sinym sink[sinG + 1)€' — sin( — 1)§' ]
X [sin(+ l)n +sin(j— 1)n'Isink{’

=4N,’E, ,(110) siné’ cosn’

X i (sine€ cost&')(sinfnsingm ' )(sink{ sink(’). ($10)]
iTk

For (c) and (d),
007 1y-plane

<wlmn | H,ff | Im n>

the nearest neighbors
= 4N02Es, xy(llo) Siﬂé’ Sinn'
X D (sini€ cosi’)sinin cosn’)(sinkg sink) (11
Lk
and

xy-plane

< Imn He/fl Imn>

the nearest neighbots

=4NE, ,(110) cost’ sinn’
X i (sinz€ sini&")(sinym cos/n’Xsinkg sink("). 12)
ik

By extending these results to others (yz and x2) planes, we
can obtain the terms denoting interactions between the near-
est neighbors for the above four pairs of cluster orbitals
as:

<I"'"|Heﬂ' I'mn>

the nearest neighbors

=4NE, (110)cosE'cosn’ + E; (011)cosn’cost’
+Es, 10 l)COSCICOS(‘:’]
*
X Z (sinz€ sine€")(sinym sinjn’)(sink{ sink(’), 13)
L.k

<wimn I Heﬁ| wﬁ’»ﬂ,ﬂ)

the nearest neighbors

=4N[E, (110)sin& cosn’ + E, .(011)cosn’cos(’
+E, (101)cos{’ cosE’]
X Y (sini€ sini¢X(sinyn sinjn")(sink§ sinky), (14)
Lk

<wlmn HY l I'm n! >

the nearest neighbors
=4N[E; ,(110)sinf’sinn’ + E; ,,(011)sinn cos{’
+E, ,(101)cost’ siné']
X ”2 (sini€ cosi&")(singn cosfn )(sink( sink('), (15)

and

D AR

the nearest neighbors

=4ANPLE; ,(110)cosé'sinn’ + E; ,(011)sinn’cos’
+E; ,(101)cos{ cosE']
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X Z (sinz€ sinz€’)(sinm cosin’)(sink{ sink{’). (16)
Lk

Note that E, (110)=E, (011)=E, (101), so Eq. (13) can be
rewritten as

<winm | He]f I wlslmlnv>

the nearest neighbors

=4NE, (110)[cost’ cosn '+ cosn'cost’ + cosl’ cost’]
X Z (sine€ sini&")(sinyn sinjn’)(sink{ sink{’). an
L)k

Besides, E; ,(110)=E,(101) and E, ,(011) equals zero, so Eq.
(14) can also be rewritten as

<lmn|Hgﬂ| I'mn>

the nearest neighbors
= 4N02ES «110) sin&’ (cosn’ + cost’)
X Z (sinz€ cosi&'Y(singm sinfm)(sink sink{’). 18)

Lk

For final solutions, however, we must know the resonance
integral values and they may be obtained from EH calcula-
tion. So, if we write Eqs. (17) and (18) as (13) and (14),
there are no problems. And for systematic treatment, the
forms of Eqs. (13)-(16) are preferred to those of Egs. (17)
and (18). From Egs. (13)-(16), we can see that they are com-
posed of two factors, one of which is a simple number and
the other the value obtained by sum of some terms.

From Egs. (13)-(16) and from the rules on the mixing of
cluster orbitals (Table 4), one notices three facts, that is:
(i) if the parities of / and !’ (or those of m and m’, or »
and »') should be different for mixing, a factor sini€ cosi€
(or sinjn cosf’, or sink{ cosk(’) appears in the summations;
(ii) factors associated with same parities are products of two
sine functions, i.e., a factor sini€ sini€’ appears in the sum-
mation if / and /' should have same parities for mixing; and
(ii) if sini€ sini€’ factor appears in the summation, the cons-
tant factor contains cos¢’, if factor of sini& cosi’ appears,
it contains sin€’. These results can be extended to any pairs
of cluster orbitals. Therefore, it is possible to write down
all of the off-diagonal elements of the Hamiltonian matrix
explicitly, that is

QU | HY | ™™ =Eo, (000)85

AN [E«,, ,(110) ( sin&’ )( sim]">+E¢' ¢.(011)< sinn’ >< sin{’ )

cost’ /\cosn cosn’ M\ cost’
et e g N s )
it (o) ok (e ) a9

If the parities of ! and !’ should be different for mixing of
given two cluster orbitals, upper factors including &' (and
those including n' for m and m’, and { for n and »') are
selected. Lower factors (&, 1/, or ' according to [ m, or
n) are selected when the same parities are needed.

The problem is that the summation in Eq. (19) cannot
be separated, for the restriction on the summation that i
+j+k=o0dd. So, if we are to separate this summation, it
must be decomposed into four summations as
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5kt

* iodd j,;n k.§m+ :';4 j,;d k;:t' (20

Each of the summation in the right-hand side of Eq. (20)
can be calculated as

> ;ﬂ (sini€ cosit’) (sinin sinfn’) (sink( sink{’)
i, even j even k,
= D (sini€ cosi&) 2. (singn sinfn’) ; (sink{ sinkg’).
i, even J. even k,
@1
To calculate the summation in Eq. (19) (and to know the

forms of all the elements of the Hamiltonian matrix), follow-
ing four summations must be calculated as

—2sin€ cost’ . =
cos2E—cos2E'’ it (£ 1)=oad

Z sinz€ cosiE' = (22)
& odd 0 L if (X 1)=even
LGOS, it 4+ 1)=odd
S sini€ cosig =4 0% T c0s2t @3
 even 0 ,if (1) =even
e e ey +1
L_;ﬂ sini€ sim€ =(8¢,§,+8;n_¢') &4—— 24)
g e e +
.;,, sins€ sini& :(8“.—65,,._5') N”4 1 (25)

With Eqgs. (19) and (22)-(25), any elements of the Hamiltonian
matrix can be calculated.

From Egs. (22)-(25), the rules on mixing of cluster orbitals
can be proved. In Eq. (14), for example, the summation can
be separated as follows:

3" (sinsk cosi€Xsinn sinjn')(sinkC sinkl’)
Lk

= D (sini€ cosi€’) . (sinjn sinn’)(sink( sinky)
)

i, even

j+k=odd
+ D (sini€ cosil’) Y. (sinjn sinjn’)(sink( sinkC)).  (26)
i, odd 1k
j+k=even

From Egs. (22) and (23), we can see that Eq. (26) is zero
if X 1')=even, i.e., the parities of / and I’ of s-type cluster
orbital and z-type one are same. So these two cluster orbitals
can mix if their parities of / and I’ are different from each
other.

Concluding Remarks

As concluding remarks we like to discuss the merits and
defects of our method. The major merit is that the limitation
on the size of the cluster has been eliminated, for the me-
thod is analytic. If the cluster is infinite crystal, we can use
the band theory of solid state physics. In this case, however,
we cannot discuss surface phenomena, for the crystal has
no surface. But cluster orbitals enable us to treat surface
properties as well as bulk properties of solids. So, one can
use this method, for instance, to study the adsorption pheno-
mena on metal surfaces. However, our method has some
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defects as: (1) the shape of cluster is limited, so the surface
is also limited to (100) plane, and cluster must be of fc.c.
structure; (2) since only diagonal submatrices are diagona-
lized, i.e, since off-diagonal submatrices (interactions bet-
ween cluster orbitals whose state indices differ from each
other) are neglected, enough mixings are not included, esp.
in case of p orbitals. The second defect arises from the fact
that the stae indices (/, m, n)'s are not “good” quantum nu-
mbers.

The present work will be extended to two directions. One
is to obtain, practically, several physical properties of metal
clusters of varying sizes. As an example, our previous work®
on the hydrogen atoms in interstices of Pd, Ni, and Pt (all
are of f.c.c. structure) clusters can be extended to large clus-
ters. These results will be reported on forthcoming paper.!
The other is to modify our scheme to include more interac-
tions and to obtain better solutions.
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Appendices

n

1. Finding the character of ™
tion Cy(2)

éz(l) lemn
=Cy2) No Zk 54, j, F)[sind€ sinjn sinkC]

under symmetry opera-

=N, Y [Cu2) pG, j, k)][sinit sinjn sinkg]

*
Ll
*
Ny Y [(— 1)p(Na+1—i, N+ 1—j, k)][sini€ sinfn sink].
Lk

(AD)
If we replace Ny+1~17 and Ng+1—j by 7 and j, respectively,
the above equation can be written_ as
62(2) le”m

=N, 2 [(—1)p.G, j R)YI[sin(n—i&) sinGmn—m) sink{]

ES

=N, Z [(—D-pG 7 BIL(—1*1(—1y"** sing€ singn sink¢]

=(-D-(- 17N 3 [ D]siniE simn sinkt]. (A2)

.G W == D (— Ty, A3)

2. Deriving the terms representing interactions between
the nearest neighbors

The number of the nearest neighbors of each atom corres-
ponding to each of three planes — that is, xy-, yz- and xz-

planes — is four. We can decompose the terms representing
the interactions between the nearest neighbors to three te-
rms which results from three planes. We will consider only
xy-plane. The formulae for other planes can be obtained simi-
larly.

@/2)

xy-plane

the nearest neighbors

®
=Ez2 21100Ny? . sins€ singn[sinG+ D&+ sinG — 1)E]
L1k
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X [sin(j + 1n+ sinG — 1)nJsink sinkg (A4)

Additional terms arising from surface atoms, say sin(i— 1)¢
in case of /=1, appear in Eq. (A4). However, sin(i— 1)=0,
so all of these terms are zero. Now, this equation can be
simplified as

(ZZ/ZZ) xy-plane
the nearest neighbors
*
=4E2 2(110)Ny*cosE cosn D sin% sin’n sin
Lk
=4E2 2(110) cos€ con 1. (A5)
Similarly,
yz-plane
/2% =4E2 2(011) cosn cost, (A6)
the nearest neighbors
and
xz-plane
@/ =4E_2 2(101) cost cost. A7)
the nearest neighbors
JJ(ED | =4E_2 2(110) cost conn

the nearest neighbors

+4E2 2(011) cosn cosC+4E 2 2(101) cosE cost,. (AB)

3. Derivation of terms representing interactions between
the second nearest neighbors

The number of the second nearest neighbors of each atom
corresponding to each of three axes — that is, x-, y- and 2-
axes — is two. We can decompose the terms representing
the interactions between the second nearest neighbors to
three terms which result from three axes. We will consider
only x-axis. The formulae for other can be obtained similarly.

x-axis

@/2)

the second nearest neighbors

=E2 220)N&{ 3 sinallsinGi-+2)¢-+ sin — 23 ]sinn sinC
Lk

- _57 [sing sin(— &) + sin¢n — Osin(n + )] sinfn sin? k{}
i3
Jj+k=even

(A9)

The form of Eq. (A9), dealing with interactions between the
second nearest neighbors, is not so simple as Eq. (A4), dea-
ling with interactions between the nearest neighbors. For
surface atoms, the first part of Eq. (A9) contains additional
terms which are not zero. Say, if i=1, sin(/—~2)é=sin(—&),
and this is not zero. These terms originate from sites where
no atom lies, say (—2, 1, 1). So they must be excluded from
the summation for the equality to hold. These excluded te-
rms comprise the second part of the equation. This equation
can be simplified as

Bull. Korean Chem. Soc, Vol. 14, No. 1, 1993 71

x-axis

@/

the second nearest neighbors
»
=E2 2200) No*{2 cos2E 3" sinfié sindjn sin%
Wik

+2sin% Y sindn sin
in%¢ ;Z sin’n sin C}

j+)¢=evm
2
=2E.2 2(200) cos2E+4E2 ,z(zoo)%fl—. (A10)
A
Similarly,
y-axis
@/
the second nearest neighbors
1n2.
=2E2 2(020) cos2n+4E,z2 2(020)-21 1L (A1)
Nz+1
and
@D |
the second nearest neighbors
12,
=2E;2 2(002) cosZ +4E.2 2(002)-S0% (A12)
Nc+1
C@GHD |
the second nearest neighbors
in
=2E2 2(200) cosZE+ 4E.2 2(200)-S1%
Ny+1
N2
+2E,2,2(020) cos2n +4E 2 2(020)"L
Nz+1
12,
+2E,2 2(002) cos2(+4E.2 2002305 (A13)
Nc+1
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