Synthesis of β-Aryl Substituted N-Tosyl Aza-Baylis-Hillman Adducts: Heck Reaction of N-Tosyl $A z a$-Baylis-Hillman Adducts

Jeong Mi Kim, Sung Hwan Kim, Se Hee Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr Received February 15, 2008

Key Words : Baylis-Hillman adducts, Heck reaction, Aza-Baylis-Hillman adducts

During the last two decades notable improvements in Baylis-Hillman chemistry have been achieved in view of the reaction rate and synthetic applications of Baylis-Hillman or aza-Baylis-Hillman adducts. ${ }^{1}$ However, the general and efficient synthesis of β-branched aza-Baylis-Hillman adducts has remained unsolved. Although many approaches have been examined, most of the methods suffer from low yields and lack of generality. ${ }^{2,3}$ Thus, development of an efficient synthetic method of these compounds would be helpful in chemical transformations of Baylis-Hillman adducts. ${ }^{1-4}$

The most simple and convenient method for the preparation of β-aryl-substituted Baylis-Hillman adducts could be the palladium-mediated Heck reaction with aryl halides. Actually intermolecular Heck type arylation of Baylis-

Hillman adducts has been examined by some research groups. ${ }^{5}$ However, the reaction gave benzyl-substituted β keto ester (A) as the major product instead of β-arylsubstituted Baylis-Hillman type adduct (B) as shown in Scheme $1 .{ }^{5}$ The compound (A) was generated via the synelimination of $\mathrm{H}_{3} \mathrm{PdOAc}$ from the intermediate (I) and the following keto-enol tautomerization. ${ }^{5 \mathrm{c}}$ This unfavorable result might be the principle reason for the lack of any trials on the synthesis of β-aryl aza-Baylis-Hillman adducts via the Heck type arylation strategy.

Three types of compounds including 3a, 4a and 5a could be produced from the Heck reaction of N-tosyl aza-BaylisHillman adduct 1a as in Scheme 2. However, we expected that the conformation of the intermediate (II, Scheme 2) might be differ with that of the corresponding intermediate

Scheme 1

1a'

4a
or

5a

Scheme 2
of Baylis-Hillman alcohol (I, Scheme 1) due to the increased steric hindrance around H_{a}. Thus, we expected that the final syn-elimination of palladium could occur with $\mathrm{H}_{\mathrm{b}} / \mathrm{H}_{\mathrm{c}}$ instead of H_{a} to produce desired 3a as the major product. With the
expectation we examined the reaction of $\mathbf{1 a}$ and iodobenzene (2a). To our delight we obtained β-phenyl N-tosyl $a z a$ -Baylis-Hillman adduct 3a in good yield (67\%) as E / Z mixture and we wish to report herein the results. To the best

Table 1. Optimization of reaction conditions for the synthesis of $\mathbf{3 a}$

Entry	Conditions	Results (\% Yield) ${ }^{a}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv), $\mathrm{PPh}_{3}(20 \mathrm{~mol} \%), \mathrm{DMF}, 90-100{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	3a (45), 1a (33)
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv), $\mathrm{PPh}_{3}(20 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}$, reflux, 25 h	3a (50), 1a (20)
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), n-\mathrm{Bu}{ }_{4} \mathrm{NBr}\left(0.5\right.$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv), $\mathrm{PPh}_{3}(20 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}$, reflux, 20 h	3a (60), 1a (15)
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), n-\mathrm{Bu} \mathrm{NBBr}^{\text {(1.0 equiv), } \mathrm{KOAc}}$ (2.0 equiv), $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}$, reflux, 18 h	3a (73), 1a (11)
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), n-\mathrm{Bu} 4 \mathrm{NBr}$ (1.0 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv), $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}, 50-60{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	3a (0), 1a' (95)
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv), $\mathrm{PPh}_{3}(20 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}$, reflux, 20 h	3a (30), 1a' (25)

${ }^{a}$ The yield of $\mathbf{3 a}$ is a combined yield of E and Z isomers. In some cases $\mathbf{3 a}$ was contaminated with small amount of 1a.
Table 2. Synthesis of β-aryl $a z a$-Baylis-Hillman adducts
Entry

[^0] $\mathrm{CH}_{3} \mathrm{CN}$, reflux; step 2: $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, reflux.
of our knowledge this is the first successful results for the synthesis of β-aryl aza-Baylis-Hillman adduct via palladiummediated Heck reaction. ${ }^{5}$
The reactions of 1a and 2a under various Pd-mediated Heck reaction conditions were examined and the results are summarized in Table 1. In most cases (entries 1-4 and 6) we observed the formation of desired product 3a in variable yields ($30-73 \%$) with some remaining starting material 1a. When we used $\mathrm{Et}_{3} \mathrm{~N}$ the reaction was sluggish (entries 1-3). Among the conditions the use of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{TBAB} / \mathrm{KOAc} /$ PPh_{3} in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ (entry 4) was found to be the best. It is interesting to note that rearranged tosylamide derivative 1a' was obtained almost quantitatively when we used $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base (entry 5). ${ }^{6,7}$
Initially, we isolated 3a-E (35\%) and 3a-Z (38\%) under the conditions of entry 4 in Table 1. However, unfortunately, $\mathbf{3 a}-Z$ was contaminated with small amount of starting material 1a, which could not be separated easily by column chromatography due to their similar mobility. Thus we used $\mathrm{K}_{2} \mathrm{CO}_{3}$ in order to convert remaining $\mathbf{1 a}$ into $\mathbf{1 a}$ ' completely according to the results of entry 5 in Table 1. In this manner we obtained analytically pure $\mathbf{3 a}-E(36 \%)$ and $\mathbf{3 a}-Z(31 \%)$, which were identified by comparison with the reported data (vide infra, entry 1 in Table 2). ${ }^{2}$
Encouraged by the successful results, we prepared starting materials 1b-d according to the reported methods, ${ }^{8}$ and synthesized analogous compounds 3b-f similarly under the optimized conditions and the results are summarized in Table 2. 4-Iodotoluene ($\mathbf{2 b}$) and 2-iodotoluene ($\mathbf{2 c}$) showed similar reactivity (entries 2 and 3). Other N-tosyl- ($\mathbf{1 b}$ and 1c) and N-phenyl- (1d) derivatives also showed same reactivity (entries 4-6). In most cases except entry 3, we observed some remaining starting materials 1a-d and we treated the reaction mixture with $\mathrm{K}_{2} \mathrm{CO}_{3}$ before separation (vide supra).

In summary, we prepared some β-aryl N-tosyl aza-BaylisHillman adducts via the Heck type reaction of aza-BaylisHillman adduct and aryl iodide under the influence of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{TBAB} / \mathrm{KOAc} / \mathrm{PPh}_{3}$ in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ in moderate yield as E / Z mixture.

Experimental Section

Typical procedure for the synthesis of 3a: A mixture of 1a ($345 \mathrm{mg}, 1.0 \mathrm{mmol}$), 2a ($408 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$), $n-\mathrm{Bu}_{4} \mathrm{NBr}(322 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{KOAc}$ ($196 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{PPh}_{3}(26 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3$ mL) was heated to reflux for 18 h . To the reaction mixture $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added and maintained refluxing for 8 h . After the usual aqueous workup and column chromatographic purification process (hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether, $\left.5: 1: 2\right)$ we obtained $3 \mathrm{a}-\mathrm{Z}(131 \mathrm{mg}, 31 \%)$ and $\mathbf{3 a}-E$ ($152 \mathrm{mg}, 36 \%$) as white solids. The selected spectroscopic data of prepared compounds $\mathbf{3 a}$ and $\mathbf{3 f}$ are as follows.

Compound 3a-Z: 31\%; white solid, mp 117-119 ${ }^{\circ} \mathrm{C}$; IR (film) $3290,2924,1711,1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 5.32(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.97(\mathrm{~m}, 2 \mathrm{H})$, 7.12 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.24,51.62,61.52$, 126.46, 127.20, 127.81, 127.94, 128.33, 128.55 (2C), $129.53,130.18,134.58,137.74,138.12,138.22,143.34$, 168.22; ESIMS $m / z 422\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 68.39 ; \mathrm{H}, 5.50 ; \mathrm{N}, 3.32$. Found: C, 68.58; H, 5.77; N, 3.23.

Compound 3a-E: 36\%; white solid, mp 153-155 ${ }^{\circ} \mathrm{C}$; IR (film) $3292,3061,1718,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 5.85(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.34(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 10 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 21.46,52.09,53.94,126.26,127.02,127.57$, 128.57, 128.78, 128.94 (2C), 129.23, 129.56, 133.65, 137.68, 139.07, 142.75, 142.92, 166.89; ESIMS m/z 422 $\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 68.39 ; \mathrm{H}, 5.50 ; \mathrm{N}$, 3.32. Found: C, 68.64; H, 5.46; N, 3.15.

Compound 3b-Z: 37%; white solid, mp $126-128^{\circ} \mathrm{C}$; IR (film) 3292, 2960, 2918, $1699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 5.29(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.71$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.26$ (2C), 51.61, 61.70, 126.46, 127.21, 127.76, 128.47, 128.53, 128.67, 129.18, 129.52, 131.61, 137.79, 138.29, 138.44, 138.75, 143.29, 168.39; LCMS $m / z 435\left(\mathrm{M}^{+}\right)$.

Compound 3b-E: 41%; white solid, mp $161-163{ }^{\circ} \mathrm{C}$; IR (film) $3309,2952,2924,1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 5.88(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.10(\mathrm{~m}, 4 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.40,21.49,52.02,54.08$, $126.34,127.05,127.55,128.05,128.57,129.10,129.19$, $129.56,130.84,137.83,139.17,140.00,142.89,142.96$, 167.03; LCMS m/z $435\left(\mathrm{M}^{+}\right)$.

Compound 3c-Z: 26%; white solid, mp $146-148{ }^{\circ} \mathrm{C}$; IR (film) $3288,2924,1707 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.34(\mathrm{~m}$, $5 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 19.84, 21.34, 51.51, 61.22, 125.13, 126.41, 127.17, 127.79 (2C), 128.38, 128.60, 129.62, 129.66, 131.23, 134.62, 135.67, 137.93, 138.50, 138.81, 143.39, 167.87; LCMS m/z $435\left(\mathrm{M}^{+}\right)$.

Compound 3c-E: 48%; white solid, mp $140-142{ }^{\circ} \mathrm{C}$; IR (film) $3309,2952,1703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.17$ (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.69(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.21-$ $7.29(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.86,21.40,52.17,53.82$, $126.13,126.22,126.92,127.38,127.75,128.44,129.30$, 129.40, 129.95, 130.32, 132.90, 137.30, 137.69, 139.48, 141.59, 142.87, 167.00; LCMS m/z $435\left(\mathrm{M}^{+}\right)$.

Compound 3d-Z: 32%; white solid, $\mathrm{mp} 88-90{ }^{\circ} \mathrm{C}$; IR (film) 3292, 2918, $1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$
$\delta 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.93(\mathrm{~m}, 2 \mathrm{H})$, $5.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}$, $1 \mathrm{H}), 6.95-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.33$ $(\mathrm{m}, 8 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 13.33,21.26,60.87,61.64,126.50,127.22,127.77$, $127.84,128.40,128.45,128.49,129.53,130.54,134.69$, 137.81, 138.02, 138.20, 143.33, 167.72.

Compound 3d-E: 40%; white solid, mp $148-149{ }^{\circ} \mathrm{C}$; IR (film) 3311, 2964, 1693, $1261 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.16(\mathrm{~m}$, $2 \mathrm{H}), 5.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=10.2,1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.43(\mathrm{~m}, 10 \mathrm{H})$, $7.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 14.02, 21.47, $53.99,61.15,126.27,127.02,127.52,128.53,128.77$, $128.94,129.19,129.24,129.50,133.72,137.75,139.20$, 142.48, 142.87, 166.43.

Compound 3e-Z: 35%; white solid, mp $86-88^{\circ} \mathrm{C}$; IR (film) $3294,2924,1703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.25$ (s, 3H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 5.31(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 2 \mathrm{H})$, 7.10-7.22 (m, 7H), 7.28-7.30 (m, 2H), 7.75 (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.01,21.27,51.64$, $61.36,126.37,127.25,127.94,128.35,128.52,129.28$, $129.53,130.32,134.67,135.15,137.60,137.79,138.03$, 143.32, 168.30.

Compound 3e-E: 41%; white solid, mp $142-143{ }^{\circ} \mathrm{C}$; IR (film) $3311,2952,1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.32$ (s, 3H), 2.39 (s, 3H), 3.66 (s, 3H), 5.80 (d, $J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.18(\mathrm{~m}, 6 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.98,21.48,52.07,53.77$, $126.20,127.05,128.77,128.97,129.06,129.21,129.31$, 129.53, 133.72, 136.07, 137.31, 137.74, 142.63, 142.88, 166.94.

Compound 3f-Z: 27%; pale yellow oil; IR (film) 3402, $3026,1712,1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.53$ (s, 3H), 4.27 (br s, 1H), 5.41 (s, 1H), 6.66-6.74 (m, 3H), 6.92 (s, 1H), 7.12-7.19 (m, 2H), 7.22-7.45 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 51.72,61.66,113.52,118.03,127.70$, 127.99, 128.12, 128.15, 128.28, 128.82, 129.19, 133.85, 134.29, 135.48, 139.89, 146.62, 169.32; ESIMS m/z 344 $\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $80.44 ; \mathrm{H}, 6.16 ; \mathrm{N}$, 4.08. Found: C, 80.67; H, 6.05; N, 3.93.

Compound $\mathbf{3 f}-E$: 31%; pale yellow oil; IR (film) 3402, $3057,1709,1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 5.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 6.37-6.41(\mathrm{~m}, 2 \mathrm{H})$, 6.62-6.68 (m, 1H), 7.02-7.09 (m, 2H), 7.25-7.43 (m, 10H), $7.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 51.88,53.99$, 113.42, 117.59, 126.44, 127.05, 128.44, 128.74, 128.91, 129.08, 129.21, 132.17, 134.82, 141.20, 141.72, 146.81, 167.26; ESIMS m/z $344\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 80.44; H, 6.16; N, 4.08. Found: C, 80.76; H, 6.35; N, 4.02.

References and Notes

1. For the general review on Baylis-Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley \& Sons: New York, 1997; Vol. 51, pp 201350. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001-8062. (d) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490 and further references cited therein.
2. For the synthesis of β-branched aza-Baylis-Hillman adducts, see: (a) Li, Q.; Shi, M.; Lyte, J. M.; Li, G. Tetrahedron Lett. 2006, 7699-7702. (b) Shi, Y.-L.; Xu, Y.-M.; Shi, M. Adv. Synth. Catal. 2004, 346, 1220-1230. (c) Back, T. G.; Rankic, D. A.; Sorbetti, J. M.; Wulff, J. E. Org. Lett. 2005, 7, 2377-2379. (d) Shi, Y.-L.; Shi, M. Tetrahedron 2006, 62, 461-475. (e) Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. Angew. Chem. Int. Ed. 2007, 46, 1878-1880.
3. For the other synthesis of β-branched $a z a$-Baylis-Hillman adducts and their synthetic applications, see: (a) Yamaguchi, A.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2007, 9, 3387-3390. (b) Vitis, L. D.; Troisi, L.; Granito, C.; Pindinelli, E.; Ronzini, L. Eur. J. Org. Chem. 2007, 356-362.
4. For our recent chemical transformations involving Baylis-Hillman adducts, see: (a) Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Tetrahedron Lett. 2007, 48, 8619-8622. (b) Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2007, 48, 16331636. (c) Park, D. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6641-6645. (d) Park, D. Y.; Kim, S. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6315-6319. (e) Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799-8803. (f) Kim, H. S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 1841-1843. (g) Gowrisankar, S.; Kim, H. S.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 18441846.
5. For the intermolecular palladium-mediated Heck type reaction of Baylis-Hillman adducts, see: (a) Basavaiah, D.; Muthukumaran, K. Tetrahedron 1998, 54, 4943-4948. (b) Sundar, N.; Bhat, S. V. Synth. Commun. 1998, 28, 2311-2316. (c) Perez, R.; Veronese, D.; Coelho, F.; Antunes, O. A. C. Tetrahedron Lett. 2006, 47, 13251328. (d) Kumareswaran, R.; Vankar, Y. D. Synth. Commun. 1998, 28, 2291-2302. (e) Kabalka, G. W.; Venkataiah, B.; Dong, G. Org. Lett. 2003, 5, 3803-3805. Intramolecular Heck reaction of BaylisHillman adducts was also studied, please see: (f) Park, J. B.; Ko, S. H.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25, 927-930.
6. Secondary tosylamide 1a was changed into the primary derivative 1a' readily with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ in the absence of Pd catalyst (reflux, 18 h , quantitative). However, we could not observe the formation of any trace amounts of 1a' when we used KOAc as a base in $\mathrm{CH}_{3} \mathrm{CN}$ in the absence of Pd catalyst (reflux, 18 h).
7. The reaction of $\mathbf{1 a}$ and bromobenzene under the optimized conditions (entry 4 in Table 1) was examined, but we observed no reaction. Most of the starting material 1a was remained (70$80 \%$) and we observed the formation of small amounts (<20\%) of 1a', which might be produced via the Pd-mediated rearrangement. For the related reference, please see: Park, J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25, 27-28.
8. For the synthesis of starting materials, see: (a) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173-175. (b) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493-1499.

[^0]: ${ }^{a}$ Conditions: step 1: compound $1(1.0 \mathrm{mmol})$, compound $2(2.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{TBAB}(1.0 \mathrm{mmol}), \mathrm{KOAc}(2.0 \mathrm{mmol})$,

