Synthesis of 3-(Arylmethylene)-1,5-benzodiazepin-2-ones from Baylis-Hillman Acetates

Jeong Mi Kim, Ka Young Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Kwangju 500-757, Korea Received June 4, 2002

Key words : 1,5-Benzodiazepine, Baylis-Hillman acetate, Benzimidazole

Seven-membered heterocycles with two heteroatoms in a 1,4-relationship are known to possess many biological activities. Particularly, aryl-annelated [1,4]diazepine and [1,4]oxazepine are crucial moieties in many psychoactive pharmaceuticals. ${ }^{1,2}$ 6-Benzylidene-oxazepane-5,7-dione is known as a valuable chiral intermediate. ${ }^{3}$ Arylmethylene benzodiazepinones have been used for the synthesis of pesticidal pyrazolobenzodiazepines and thiazinobenzodiazepines. ${ }^{4}$ Besides of these papers, numerous reports have been reported regarding the synthesis or biological activity of benzodiazepines ${ }^{1}$ or dibenzodiazepines. ${ }^{2}$ Recently, Reiser et al. have reported combinatorial liquid-phase synthesis of [1,4]oxazepin-7-ones via the Baylis-Hillman reaction. ${ }^{5}$

In these respects, we intended to prepare some 3-(aryl-methylene)-1,5-benzodiazepin-2-one derivatives from the Baylis-Hillman acetates. The reaction of the Baylis-Hillman acetate 1a and 1,2-phenylenediamine (2) in acetonitrile in the presence of potassium carbonate gave the allylic substitution product $3 \mathbf{a}^{6}$ (Scheme 1). The E and Z-form of 3a could be separated easily. Heating of pure $\mathbf{3 a}-E$ in acetic acid afforded a mixture of $\mathbf{4 a ^ { 6 }}$ and $\mathbf{5 a} \mathbf{a}^{6}$ (Scheme 2). The yield of desired 3-(benzylidene)-1,5-benzodiazepin-2-one (4a) was moderate (36%). Instead, the benzimidazole-substituted compound 5a was isolated in 34% yield.

To improve the yield of the desired benzodiazepine

Scheme 1

Scheme 2

Scheme 3
derivative 4a, we examined other carboxylic acid solvent such as propionic acid, formic acid and trifluoroacetic acid as shown in Table 1. However, we could not improve the yield of $\mathbf{4 a}$. In all cases, except for formic acid, differently substituted benzimidazole-substituted derivatives, $\mathbf{5 b}$ and $\mathbf{5 c}$, were isolated in variable yields. It is interesting to note that the use of formic acid gave neither the corresponding benzodiazepine nor benzimidazole derivatives. Instead, di-

Table 1. Synthesis of 3-benzylidene-1,5-benzodiazepin-2-one derivatives

formyl derivative 6 was formed in good yield. In formic acid N -formylation proceeded easily at the two nitrogen atoms, thus preventing the next cyclization toward benzodiazepine or benzimidazole.

The reaction of acetic acid and Z-form of 3a gave the benzimidazole derivative $\mathbf{5 d}$ as the sole product (66%, entry 5). We could not isolate the corresponding benzodiazepine compound $\mathbf{4 b}$ at all. We could not explain the reason at this stage. The reaction of $\mathbf{3 b}-E$ in acetic acid or in propionic acid gave the similar results (entries 6 and 7).

Improved synthesis of benzodiazepine derivative 4a was finally carried out by using 1,3-dicyclohexylcarbodiimide (DCC) method for the amide bond formation. Hydrolysis of 3a- E with sodium hydroxide gave the corresponding acid derivative in 97% yield. Formation of the amide bond by using DCC in THF (rt, 3h) afforded $\mathbf{4 a}$ in 83% yield (Scheme 3).

Acknowledgment. This work was supported by the grant (No. R05-2000-000-00074-0) from the Basic Research Program of the Korea Science \& Engineering Foundation.

References and Notes

1. (a) Lee, J.; Gauthier, D.; Rivero, R. A. J. Org. Chem. 1999, 64, 3060. (b) Kraus, G. A.; Liu, P. Tetrahedron Lett. 1995, 36, 7595.
2. (a) Levy, O.; Erez, M.; Varon, D.; Keinan, E. Bioorg. Med. Chem. Lett. 2001, 11, 2921. (b) Liao, Y.; Venhuis, B. J.; Rodenhuis, N.; Timmerman, W.; Wikstrom, H. Meier, E.; Bartoszyk, G. D.; Bottcher, H.; Seyfried, C. A.; Sundell, S. J. Med. Chem. 1999, 42, 2235. (c) Cohen, V. I.; Jin, B.; Cohen, E. I.; Zeeberg, B. R. J. Heterocyclic Chem. 1998, 35, 675. (d) Liao, Y.; DeBoer, P.; Meier, E.; Wikstrom, H. J. Med. Chem. 1997, 40, 4146. (e) Cortes, E. C.; Islas, P. M.; Garcia, M. M.; Romero, M. O. Z. J. Heterocyclic Chem. 1996, 33, 1723. (f) Zhang, L.-h.; Meier, W.; Wats, E.;

Costello, T. D.; Ma, P.; Ensinger, C. L.; Rodgers, J. M.; Jacobson, I. C.; Rajagopalan, P. Tetrahedron Lett. 1995, 36, 8387.
3. Tietze, L. F.; Brand, S.; Pfeiffer, T.; Antel, J.; Harms, K.; Sheldrick, G. M. J. Am. Chem. Soc. 1987, 109, 921.
4. Khan, M. H.; Bano, Q.; Nizamuddin J. Agric. Food Chem. 1995, 43, 2719.
5. Racker, R.; Doring, K.; Reiser, O. J. Org. Chem. 2000, 65, 6932.
6. A typical procedure for the synthesis of 3a, 4a and 5a: A stirred solution of $\mathbf{1 a}(496 \mathrm{mg}, 2.0 \mathrm{mmol})$, phenylenediamine ($\mathbf{2 a}, 432$ $\mathrm{mg}, 4.0 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(552 \mathrm{mg}, 4.0 \mathrm{mmol})$ in acetonitrile (10 mL) was heated to reflux for 14 h . After usual workup and column chromatographic separation (hexane/ether, 3:1) allylic substitution products 3a-E (304 mg, 51\%) and 3a-Z (102 mg, 17\%) was obtained. Pure 3a-E ($296 \mathrm{mg}, 1.0 \mathrm{mmol}$) in acetic aicd (3 mL) was heated to $60-70{ }^{\circ} \mathrm{C}$ during 18 h . After usual workup and column chromatographic separation (hexane/ether, 3:1-1:2), 4a (91 mg, 36%) and 5a ($110 \mathrm{mg}, 34 \%$) were isolated. 3a-E: oil; IR (KBr) $3403,3343,3246,1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 6.55-6.78 (m, 4H), 7.33-7.46 (m, 5H), $7.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.27,41.38,61.10,112.95,116.19,119.36,120.23$, 128.64, 129.09, 129.50, 129.73, 134.82, 135.25, 136.97, 142.56, 167.78. 3a-Z: oil; IR (KBr) 3404, 3342, 3246, $1711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.50(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.10(\mathrm{~s}$, $2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.70-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$, 7.24-7.30 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 13.74, 48.47, 60.82, $113.24,116.64,119.48,120.56,127.99,128.03,128.32,131.74$, 134.77, 134.82, 135.61, 136.73, 168.76. 4a: yellow solid, mp 155$157{ }^{\circ} \mathrm{C}$; IR (KBr) 3403, 3354, 3188, 3058, 1656, 1625, $1384 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 6.73-7.02$ $(\mathrm{m}, 4 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 43.34,118.00,119.79,120.25,123.05,126.65$, 127.45 (2C by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ hetero-COSY), 128.46, 130.97, 134.32, 137.03, 138.31, 168.62; Mass (70 eV) m / z (rel. intensity) 119 (99), 134 (20), 173 (30), 221 (34), 250 (${ }^{+}$, 100). 5a: oil; IR (KBr) $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}), 4.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.64(\mathrm{~m}, 9 \mathrm{H})$, $8.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.89,14.21,40.43,61.24$, $109.98,118.78,121.54,121.73,127.89,128.91,129.17,129.39$, $134.19,135.09,142.45,142.83,152.30,166.08$.

