Synthesis of 1,2,3,4-Tetrahydroisoquinoline-2-sulfonic Acids

Ji Sun Lee, Sun Hee Kim, Han Sik Yoon, ${ }^{\dagger}$ and Chai-Ho Lee*
Department of Chemistry, Wonkwang University, Jeonbuk 570-749, Korea
${ }^{\dagger}$ School of Medical Radiation, Wonkwang Helth Science College, Jeonbuk 570-750, Korea Received May 7, 2003

Key Words : Tetrahydroisoquinoline, Sulfamic acid, Iminium ion

The 1,2,3,4-tetrahydroisoquinoline (THIQ) alkaloids $\mathbf{1}$, which are widely distributed in plant and animal kingdoms, have received much attention because of their important biological activities. ${ }^{1}$ For example, 1-aryl- or 1-alkyl-1,2,3, 4-tetrahydroisoquinolines present in mammalian brain play a major role in therapy of variety of neurological disorders. ${ }^{2}$

$Y=$ acyl, sulfonyl
3
Two general, acid mediated procedures have been reported for the preparation of THIQ ring system. The first entails the Pictet-Spengler reaction of a 2-arylethylamine 2 with aldehyde. ${ }^{3}$ The second method requires the treatment of a $N-$ substituted-2-arylethylamine 3 (i.e., N -acyl ${ }^{4}$ and N -sulfonyl group ${ }^{5}$ on the nitrogen) with carbonyl compound (i.e., aldehyde, and the corresponding acetal). In these processes, introduction of an electron withdrawing substituents on nitrogen is to increase the electrophilicity of iminium intermediate. Previously, we demonstrated the intramolecularand intermolecular α-sulfamidoalkylation transformation proceeding through the intermediacy of an iminium ion provide an expeditious route for the preparation of cyclic sulfamides containing THIQ ring. ${ }^{6}$ The sulfamic acid also have a sulfonic acid group as an electron withdrawing group on the nitrogen atom and is readily hydrolyzed to the

Scheme 1. Synthesis of $\mathbf{8}$. Reagents and coditions: (i) 1) $\mathrm{ClSO}_{3} \mathrm{H}-$ $\mathrm{Et}_{3} \mathrm{~N},-5-0{ }^{\circ} \mathrm{C}, 2$) $c-\mathrm{HCl}$; (ii) $\mathrm{HCO}_{2} \mathrm{H}$.
corresponding amines. ${ }^{7}$
In this present study, we report on the reaction of N-(2arylethyl)sulfonic acids 6 with aldehydes 7 (or the corresponding acetals $\mathbf{8}$) in formic acid for generation of $1,2,3,4-$ tetrahydroisoquinoline-2-sulfonic acids 9 .
The starting sulfamic acid 6 were prepared according to established synthetic protocols. ${ }^{8}$ When amine 5 was reacted with $\mathrm{ClSO}_{3} \mathrm{H}-\mathrm{Et}_{3} \mathrm{~N}$ in chloroform, followed by treatment with hydrochloric acid, sulfamic acid 6 was formed in 60-70 $\%$ yield. Intramolecular cyclization of $\mathbf{6}$ with $\mathbf{7}$ or $\mathbf{8}$ in fomic acid $\left(96 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ gave the desired product 9 in good yield. Identification of all the isolated products 9 was accomplished with the aid of infrared, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and mass

Table 1. Reaction condition, mp, and yield of product 9

Entry	No.	R ${ }^{1}$	R	Reac cond	tion tions	$\begin{aligned} & \text { mp } \\ & \left({ }^{\circ} \mathrm{C}\right)^{a} \end{aligned}$	$\begin{aligned} & \text { Yield } \\ & (\%)^{b} \end{aligned}$
				Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)		
1	9a	H	H	rt	1	200-213	81
2	9 b	H	OMe	rt	1	172-200	65
3	9 c	$\mathrm{CH}_{2} \mathrm{Cl}$	H	rt	12	75-80	74
4	9 d	$\mathrm{CH}_{2} \mathrm{Cl}$	OMe	rt	0.5	174-176	92
5	9 e	$\mathrm{CH}_{2} \mathrm{CN}$	H	rt	24	205-215	65
6	9 f	$\mathrm{CH}_{2} \mathrm{CN}$	OMe	rt	1	194-195	68
7	9g	COOEt	H	rt	48	104-108	58
8	9 h	COOEt	OMe	rt	48	170-171	67
9	9 i	Benzyl	H	rt	24	142-145	84
10	9 j	Benzyl	OMe	rt	48	150-152	73
11	9k	Phenyl	H	50	24	169-171	65
12	91	Phenyl	OMe	50	24	172-176	78
13	9m	3-methoxy-4hydroxyphenyl	H	50	24	117-119	62
14	9n	3-methoxy-4hydroxyphenyl	OMe	50	24	76-99	71
15	90	3,4,5-trimethoxyphenyl	H	rt	48	159-160	66
16	9p	3,4,5-trimethoxyphenyl	OMe	50	24	169-176	68
17	9 q	2-furyl	H	rt	48	180-188	70
18	9 r	2-furyl	OMe	rt	48	134-140	74
19	9 S	2-thiophenyl	H	rt	24	186-190	70
20	9t	2-thiophenyl	OMe	rt	24	230-238	76

${ }^{a}$ Isolated yields. ${ }^{b}$ Melting points are uncorrected.
spectroscopy. In the infrared spectrum, the compound 9 exhibited characteristic absorption bands at 1246-1277 and $1016-1119 \mathrm{~cm}^{-1}$ for the sulfonyl group. ${ }^{9}$ Diagnostic signals of compounds 9 were observed at 4.38-6.13 ppm in the ${ }^{1} \mathrm{H}$ NMR spectra and at $48.5-60.8 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectra for the methine (C-1) unit furnished by aldehdes 7 (or acetals 8).

In conclusion, we have developed a general and versatile method for the synthesis of 1,2,3, 4-tetrahydroisoquinoline2 -sulfonic acids, by the reaction of N -(2-arylethyl)sulfamic acids with aldehydes (or acetals).

Experimental Section

Typical experimental procedure for synthesis of N arylethylsulfamic acid 6. A solution of arylethylamine 5 $(10 \mathrm{mmol})$ and triethylamine (12 mmol) in 30 mL of CHCl_{3} was stirred at $-5-0{ }^{\circ} \mathrm{C}$ and chlorosulfonic acid (10 mmol) was added dropwise so as to maintain the temperature below 0 ${ }^{\circ} \mathrm{C}$. The solution was acidified with 1 N HCl solution to pH 2. The solid that precipitated was filtered to give the desired products 6 .

2-(3-Methoxyphenyl)ethylsulfamic acid (6a): Beginning with 3-methoxyphenethylamine (1.51 g), compound $\mathbf{6 a}$ was obtained in 55% yield (1.27 g): mp 144-146 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3180(\mathrm{NH}), 1288,1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 2.87$ (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.21(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 6.79-6.82 (m, 3H), 7.22-7.25 (m, 1H), 10.18 (br s, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 32.5,45.6,55.5,112.9,114.7$, 121.3, 130.2, 139.4, 160.0 ppm ; LR FBA MS: calcd for [M-1] ${ }^{-} 230.1$, found 230.2.
2-(3,4-Dimethoxyphenyl)ethylsulfamic acid (6b): Beginning with 3,4-dimethoxyphen-ethylamine (1.81 g), compound $\mathbf{6 b}$ was obtained in 67% yield (1.75 g): mp 164$170{ }^{\circ} \mathrm{C}$; IR (KBr) $3146(\mathrm{NH}), 1259,1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 2.82(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{dd}, J=1.8 \mathrm{~Hz}$ and $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1 H), 10.18 (br s, 1 H) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 32.1, $45.9,56.0,56.1,112.6,113.0,121.0,130.2,184.2,149.4$ ppm; LR FBA MS: calcd for [M-1] ${ }^{-} 260.1$, found 260.2.
Typical experimental procedure for synthesis of $1,2,3$, 4-tetrahydroisoquinoline-2-sulfonic acid 9. A formic acid (96% in $\mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~mL}$) solution of arylethylsulfamic acids 6 (2.0 mmol) and aldehydes 7 (or acetals 8) (2.0 mmol) was stirred, and then the solution was quenched with $1 N \mathrm{HCl}(50$ mL). The solid that precipitated was filtered and then recrystallized from methanol-chloroform to give the desired products 9 (Table 1).
9a: IR (KBr) $1269,1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ $3.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 4.39$ ($\mathrm{s}, 2 \mathrm{H}$), 6.75 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=2.3$ Hz and $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 26.3,45.9,48.5,54.9$ 113.1, 113.4, 120.8, 128.1, 133.1, 159.3 ppm ; LR FBA MS: calcd for [M-1] ${ }^{-}$242.1, found 242.7.
9b: IR (KBr) 1258, $1057 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ
$3.07(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $6 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d d $_{6}$) $\delta 25.6,46.1,48.5,55.4,55.5,109.8,111.5$, 120.5, 123.8, 148.2, 148.7 ppm ; LR FBA MS: calcd for [M-1] ${ }^{-}$272.1, found 272.7.

9c: IR (KBr) 1265, $1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.05 (ddd, $J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (ddd, $J=5.5 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}$, and $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (ddd, $J=5.5 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}$, and $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (ddd, $J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 4.18(\mathrm{dd}, J=7.1 \mathrm{~Hz}$ and $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$ 3.4 Hz and $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=3.4 \mathrm{~Hz}$ and $J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=2.7 \mathrm{~Hz}$ and J $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (acetone-d ${ }_{6}$) $\delta 25.3,40.0,44.6,55.1,55.7,113.7,113.8$, 120.7, 127.9, 134.5, 159.5 ppm ; LR FBA MS: calcd for [M-1] ${ }^{-}$290.0, found 290.2.

9d: IR (KBr) 1273, $1071 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.03 (ddd, $J=5.5 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}$, and $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (ddd, $J=5.5 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, and $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (ddd, $J=5.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, and $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (ddd, $J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78(\mathrm{~s}$, $6 \mathrm{H}), 4.25$ (dd, $J=7.3 \mathrm{~Hz}$ and $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=$ 3.6 Hz and $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=3.6 \mathrm{~Hz}$ and $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone$\left.\mathrm{d}_{6}\right) \delta 24.6,40.1,44.7,55.3,55.6,55.8,109.7,112.0,120.4$, 125.3, 148.6, 149.5 ppm ; LR FBA MS: calcd for [M-1] ${ }^{-}$ 320.0, found 320.2.

9e: IR (KBr) 1251, $1049 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ 3.10 (ddd, $J=6.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (ddd, $J=6.4 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}$, and $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.36(\mathrm{dd}$, $J=5.0 \mathrm{~Hz}$ and $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=6.1 \mathrm{~Hz}$ and $J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (ddd, $J=6.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.64 (ddd, $J=5.5 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}$, and $J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.89(\mathrm{dd}, J=5.0 \mathrm{~Hz}$ and $J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=2.3 \mathrm{~Hz}$ and $J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (methanol-d ${ }_{3}$) $\delta 22.0,24.9,39.6,51.1,54.6,113.5,113.8,115.8,121.1$, 127.6, 133.3, 160.2 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-}$ 281.1, found 281.7 .

9f: IR (KBr) 1271, $1071 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.05-3.09 (m, 2H), $3.38(\mathrm{dd}, J=5.0 \mathrm{~Hz}$ and $J=17.9 \mathrm{~Hz}$, 1 H), 3.54 (dd, $J=5.5 \mathrm{~Hz}$ and $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (ddd, J $=5.0 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{ddd}, J=$ $5.5 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 4.97(\mathrm{dd}, J=5.0 \mathrm{~Hz}$ and $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}$, $1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 22.7,24.3$, 39.5, 50.6, 55.4, 55.6, 109.5, 111.9, 116.8. 120.9, 124.7, 148.4, 149.5 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 311.1$, found 311.7.

9g: IR (KBr) 1248, $1016 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) 3.14$ (ddd, $J=5.5 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}$, and $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (ddd, $J=5.5 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}$, and $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{ddd}, J=5.5 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}$, and $J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}$, $J=2.7 \mathrm{~Hz}$ and $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$
ppm; ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 13.4,25.0,39.9,54.9,55.7$, $62.8,113.4,113.7,117.9,129.1,134.1,160.0,167.6 \mathrm{ppm}$; LR FBA MS: calcd for [M-1] ${ }^{-} 315.1$, found 315.7.
9h: IR (KBr) 1273, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.33$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) 2.96$ (ddd, $J=3.2 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}$, and $J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=4.1 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}$, and $J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=3.2 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}$, and $J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{ddd}, J=3.2 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}$, and $J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86$ (s, 3H), 3.87 (s, 3H), 4.35 (q, J=7.3 Hz, 2H), $5.43(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1,26.2,45.9,56.1,56.2,60.8,64.3,109.7$, 111.2, 124.8, 148.8, 149.8, 149.7, 169.0 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 344.1$, found 344.7 .
9i: IR (KBr) 1246, $1059 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ 3.07 (ddd, $J=6.0 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}$, and $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (dd, $J=8.2 \mathrm{~Hz}$ and $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=6.0 \mathrm{~Hz}$, $J=7.1 \mathrm{~Hz}$, and $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (ddd, $J=6.0 \mathrm{~Hz}, J=$ 7.1 Hz , and $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=6.4 \mathrm{~Hz}$ and $J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (ddd, $J=6.0 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}$, and $J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{dd}, J=6.4 \mathrm{~Hz}$ and $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=2.3 \mathrm{~Hz}$ and $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 3 \mathrm{H})$, 7.37-7.41 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR (methanol-d ${ }_{3}$) δ 25.2, $39.2,39.8,54.5,56.4,113.1,113.2,123.4,127.5,127.9$, 128.9, 129.4, 132.8, 135.3, 129.7 ppm; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 332.1$, found 332.7.
9j: IR (KBr) 1262, $1061 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ 3.04 (ddd, $J=3.9 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (ddd, $J=6.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (ddd, $J=3.9 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, and $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (ddd, $J=6.0 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}$, and $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{dd}$, $J=7.3 \mathrm{~Hz}$ and $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=7.4 \mathrm{~Hz}$ and $J=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (s, 3H), 3.81 (s, 3 H), 4.74 (dd, $J=7.3 \mathrm{~Hz}$ and $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}$, 3H), 7.38-7.41 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR (methanol-d d_{3}) δ $24.5,39.1,40.0,53.8,55.1,55.3,110.3,111.8,123.2,124.0$, 127.4, 129.0, 130.0, 135.9, 147.6, 149.0 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 362.1$, found 362.7 .
9k: IR (KBr) $1269,1067 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ $3.15(\mathrm{ddd}, J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (ddd, $J=6.5 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (ddd, $J=5.5 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}$, and $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (ddd, $J=5.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}$, and $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}$, $3 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=2.8$ Hz and $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.46-7.48(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) δ $25.3,40.0,55.0,59.2,113.1,113.6,123.7,129.1,129.4$, 129.6, 130.1, 134.2, 137.0, 159.3 ppm. LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 318.1$, found 318.7.
91: IR (KBr) 1262, $1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ 3.11 (ddd, $J=5.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (ddd, $J=6.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (ddd, $J=5.5 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}$, and $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, $J=6.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.37 (m, 2H), 7.47-7.49 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (methanol-d ${ }_{3}$) $\delta 24.5,39.5,55.1,55.3,59.3,110.7,111.4$,
122.9, 124.8, 129.1, 129.7, 129.8, 136.4, 148.3, 149.5 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 348.1$, found 348.7.

9m: IR (KBr) 1263, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ 3.12 (ddd, $J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (ddd, $J=6.2 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}$, and $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (ddd, $J=5.5 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (ddd, $J=5.5 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}$ and $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz} \mathrm{1H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (methanol-d ${ }_{3}$) $\delta 25.2,39.8$, 54.5, 55.2, 59.7, 112.7, 112.8, 113.5, 115.3, 122.7, 123.6, 127.5, 129.3, 133.5, 147.9, 148.2, 159.7 ppm LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 364.1$, found 364.7.

9n: IR (KBr) 1260, $1059 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.08 (ddd, $J=6.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}$, and $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (ddd, $J=6.4 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, and $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, $J=6.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, and $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, $J=6.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H})$, $6.76(\mathrm{dd}, J=1.9 \mathrm{~Hz}$ and $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 24.8,4.04,55.2,55.4,55.9,59.5,111.3$, 111.6, 113.5, 114.9, 123.2, 123.6, 125.2, 128.0, 147.1, 147.9, 148.4, 149.6 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-}$ 394.1, found 394.7.

90: IR (KBr) 1277, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.13 (ddd, $J=5.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (ddd, $J=6.0 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}$, and $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (ddd, $J=5.5 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (ddd, $J=5.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (s, $3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H})$, $6.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}$ and $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz} 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) δ 25.2, 40.6, 54.9, 55.9, 59.8, 59.9, 107.4, 113.1, 113.5, 123.6, 129.4, 132.3, 134.1, 138.8, 153.7, 159.4 ppm; LR FBA MS: calcd for $[\mathrm{M}-1]^{-}$408.1, found 804.7.

9p: IR (KBr) $1261,1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.10 (ddd, $J=5.5 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (ddd, $J=6.4 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}$, and $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (ddd, $J=5.5 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}$, and $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (ddd, $J=5.7 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (s, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H})$, $6.43(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 25.0,41.0,54.8,56.0,56.2,56.4,60.4,60.9$, $107.2,110.6,111.2,122.5,124.7,131.5,138.8,148.2$, 149.3, 153.6 ppm . LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 438.1$, found 438.7 .

9q: IR $(\mathrm{KBr}) 1246,1115 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ 3.17 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.52(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=1.8 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{dd}, J=2.3 \mathrm{~Hz}$ and $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz} 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (methanol-d d_{3}) $\delta 24.9,39.0,52.2,54.8$, $110.8,112.9,113.2,113.6,120.7,128.9,133.3,144.7$, 148.9, 159.8 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 308.1$, found 308.7.

9r: IR (KBr) 1265, $1119 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (methanol-d ${ }_{3}$) δ
$3.12(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.85 (s, 3H), 5.81 (s, 1H), 6.44 (d, J=3.2 Hz, 1H), 6.50 (dd, $J=1.8 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz} 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (methanol-d $\left.{ }_{3}\right) \delta$ 24.3, 38.3, 52.1, 55.3, 110.4, 110.8, 111.6, 113.0, 120.4, 124.5, 144.7, 148.4, 148.9, 149.7 ppm; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 338.1$, found 338.6 .
9s: IR (KBr) 1269, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d d_{6}) δ 3.17 (ddd, $J=6.4 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}$, and $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (ddd, $J=5.9 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (ddd, $J=6.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (ddd, $J=5.9 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}$, and $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}$, $3 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=2.3 \mathrm{~Hz}$ and $J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=3.2 \mathrm{~Hz}$ and $J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=0.9 \mathrm{~Hz}$ and $J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 25.1,28.9,53.5$, 55.0, 113.1, 113.6, 123.5, 127.7, 128.5, 129.6, 130.6, 133.6, 139.6, 159.5 ppm ; LR FBA MS: calcd for $[\mathrm{M}-1]^{-} 324.0$, found 324.2.
9t: IR $(\mathrm{KBr}) 1263,1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) δ 3.16 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.07$ (dd, $J=3.2 \mathrm{~Hz}$ and $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{dd}, J=0.9 \mathrm{~Hz}$ and $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 24.3,38.5,53.2,55.3,55.4,111.2,111.5$, 123.1, 124.7, 127.7, 128.5, 130.7, 139.7, 148.2, 149.7 ppm ; LR FBA MS: calcd for [M-1] ${ }^{-} 354.1$, found 354.1.

Acknowledgements. This work was supported by grant No. R01-2001-000-00133-0 from the Korea Science \& Engineering Foundation.

References

1. (a) Padwa, A.; Beall, L. S.; Heidelbauugh, T. M.; Liu, B.;

Sheehan, S. M. J. Org. Chem. 2000, 65, 2684. (b) Glunewald, G. L.; Dahanukar, V. H.; Teoh, B.; Criscione, K. R. J. Med. Chem. 1999, 42, 1982. (c) Minor, D. L.; Wyrick, S. D.; Charifson, P. S.; Watts, V. J.; Nochols, D. E.; Mailman, R. B. J. Med. Chem. 1994, 37, 4328.
2. (a) Shinohara, T.; Toda, J.; Sano, T. Chem. Pharm. Bull. 1997, 45(5), 813. (b) Ornstein, P. L.; Arnold, M. B.; Allen, N. K.; Bleisch, T.; Borromeo, P. S.; Lugar, C. W.; Leander, J. D.; Lodge, D.; Schoepp, D. D. J. Med. Chem. 1996, 39, 2219. (c) Munchhof, M. J.; Meyers, A. I. J. Org Chem. 1996, 61, 4607. (d) Carifson, P. S.; Bowen, J. P.; Wyrick, S. D.; Hoffman, A. J.; Cory, M.; McPhail, A. T.; Mailman, R. B. J. Med. Chem. 1989, 32, 2050. (f) Clark, M. T.; Adejare, A. G.; Feller, D. R.; Miller, D. D. J. Med. Chem. 1987, 30, 86. (g) Battersby, A. R.; Southgate, R.; Staunton, J.; Hurst, M. J. Chem. Soc. (C) 1966, 1052.
3. (a) Eric, D.; Cook, J. M. Chem. Rev. 1995, 95(6), 1797. (b) Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 151.
4. (a) Speckamp, W. N.; Moolenar, M. J. Tetrahedron 2000, 56, 3817. (b) Venkov, A. P.; Lukanov, L. K. Synthesis 1989, 59. (c) Mollov, N. M.; Venkov, A. P. Synthesis 1978, 62.
5. (a) Barn, D. R.; Caulfield, W. L.; Cottney, J.; MaGurk, K.; Morphy, J. R.; Rankovic, Z.; Roberts, B. Bioorg. \& Med. 2001, 9, 2609. (b) Kohno, H.; Sekine, Y. Heterocycles 1996, 42(1), 141. (c) Lukanov, L. K.; Venkov, A. P.; Mollov, M. Synthesis 1987, 204.
6. (a) Lee, J. S.; Yang, I. D.; Kim, S. H.; An, S. I.; Lee, C.-H. Bull. Korean Chem. Soc. 2003, 24(1), 129. (b) Lee, J. D.; Lee, C.-H.; Nakamura, H.; Ko, J.; Kang, S. O. Tetrahedon Lett. 2002, 43, 5483. (c) Lee, J. S.; Lee, C.-H. Bull. Korean Chem. Soc. 2002, 23(1), 167. (d) Lee, J. S.; Lee, C.-H. J. Korean Chem. Soc. 2001, 45, 92. (e) Kong, Y. J.; Kim, S. H.; Lee, C.-H. J. Korean Chem. Soc. 1999, 43, 131. (f) Lee, C.-H.; Kohn, H. J. Heterocyclic Chem. 1990, 27, 2107. (g) Lee, C.-H.; Kohn, H. J. Org. Chem. 1990, 55, 6098. (h) Lee, C.-H.; Kohn, H. Heterocycle 1988, 27, 2581.
7. (a) Kim, B. M.; So, S. M. Tetrahedron Lett. 1998, 39, 5381. (b) Benson, G. A.; Spillane, W. J. Chem. Rev. 1980, 80, 151.
8. (a) Shi, D.-F.; Bradshaw, T. D.; Chua, M.-S.; Westwell, A. D.; Stevens, M. F. Bioorg. \& Med. Chem. Lett. 2001, 11, 1093. (b) Curran, W. V.; Ross, A. A.; Lee, V. J. J. Antibiot. 1988, XLI(10), 1418.
9. Nakanish, K.; Solomon, P. H. Infrared Absorption Spectroscopy; Holden-Day: San Francisco, 1977.

