## Synthesis of 1,2,3,4-Tetrahydroisoquinoline-2-sulfonic Acids

Ji Sun Lee, Sun Hee Kim, Han Sik Yoon,<sup>†</sup> and Chai-Ho Lee<sup>\*</sup>

Department of Chemistry, Wonkwang University, Jeonbuk 570-749, Korea <sup>†</sup>School of Medical Radiation, Wonkwang Helth Science College, Jeonbuk 570-750, Korea Received May 7, 2003

Key Words : Tetrahydroisoquinoline, Sulfamic acid, Iminium ion

The 1,2,3,4-tetrahydroisoquinoline (THIQ) alkaloids **1**, which are widely distributed in plant and animal kingdoms, have received much attention because of their important biological activities.<sup>1</sup> For example, 1-aryl- or 1-alkyl-1,2,3, 4-tetrahydroisoquinolines present in mammalian brain play a major role in therapy of variety of neurological disorders.<sup>2</sup>



Two general, acid mediated procedures have been reported for the preparation of THIQ ring system. The first entails the Pictet-Spengler reaction of a 2-arylethylamine 2 with aldehyde.<sup>3</sup> The second method requires the treatment of a Nsubstituted-2-arylethylamine 3 (*i.e.*, N-acyl<sup>4</sup> and N-sulfonyl group<sup>5</sup> on the nitrogen) with carbonyl compound (*i.e.*, aldehyde, and the corresponding acetal). In these processes, introduction of an electron withdrawing substituents on nitrogen is to increase the electrophilicity of iminium intermediate. Previously, we demonstrated the intramolecularand intermolecular  $\alpha$ -sulfamidoalkylation transformation proceeding through the intermediacy of an iminium ion provide an expeditious route for the preparation of cyclic sulfamides containing THIQ ring.<sup>6</sup> The sulfamic acid also have a sulfonic acid group as an electron withdrawing group on the nitrogen atom and is readily hydrolyzed to the



Scheme 1. Synthesis of 8. Reagents and coditions: (i) 1) ClSO<sub>3</sub>H-Et<sub>3</sub>N, -5-0 °C, 2) c-HCl; (ii) HCO<sub>2</sub>H.

corresponding amines.<sup>7</sup>

In this present study, we report on the reaction of N-(2-arylethyl)sulfonic acids **6** with aldehydes **7** (or the corresponding acetals **8**) in formic acid for generation of 1,2,3,4-tetrahydroisoquinoline-2-sulfonic acids **9**.

The starting sulfamic acid **6** were prepared according to established synthetic protocols.<sup>8</sup> When amine **5** was reacted with ClSO<sub>3</sub>H-Et<sub>3</sub>N in chloroform, followed by treatment with hydrochloric acid, sulfamic acid **6** was formed in 60-70 % yield. Intramolecular cyclization of **6** with **7** or **8** in fomic acid (96% in H<sub>2</sub>O) gave the desired product **9** in good yield. Identification of all the isolated products **9** was accomplished with the aid of infrared, <sup>1</sup>H and <sup>13</sup>C NMR, and mass

Table 1. Reaction condition, mp, and yield of product 9

| Entry | No. | $R^1$                         | R   | Reaction conditions |      | mp                | Yield      |
|-------|-----|-------------------------------|-----|---------------------|------|-------------------|------------|
|       |     |                               |     | Temp.               | Time | $(^{\circ}C)^{a}$ | $(\%)^{b}$ |
|       |     |                               |     | $(^{o}C)$           | (h)  |                   |            |
| 1     | 9a  | Н                             | Н   | rt                  | 1    | 200-213           | 81         |
| 2     | 9b  | Н                             | OMe | rt                  | 1    | 172-200           | 65         |
| 3     | 9c  | CH <sub>2</sub> Cl            | Н   | rt                  | 12   | 75-80             | 74         |
| 4     | 9d  | CH <sub>2</sub> Cl            | OMe | rt                  | 0.5  | 174-176           | 92         |
| 5     | 9e  | CH <sub>2</sub> CN            | Η   | rt                  | 24   | 205-215           | 65         |
| 6     | 9f  | CH <sub>2</sub> CN            | OMe | rt                  | 1    | 194-195           | 68         |
| 7     | 9g  | COOEt                         | Н   | rt                  | 48   | 104-108           | 58         |
| 8     | 9h  | COOEt                         | OMe | rt                  | 48   | 170-171           | 67         |
| 9     | 9i  | Benzyl                        | Н   | rt                  | 24   | 142-145           | 84         |
| 10    | 9j  | Benzyl                        | OMe | rt                  | 48   | 150-152           | 73         |
| 11    | 9k  | Phenyl                        | Η   | 50                  | 24   | 169-171           | 65         |
| 12    | 91  | Phenyl                        | OMe | 50                  | 24   | 172-176           | 78         |
| 13    | 9m  | 3-methoxy-4-                  | Н   | 50                  | 24   | 117-119           | 62         |
|       |     | hydroxyphenyl                 |     |                     |      |                   |            |
| 14    | 9n  | 3-methoxy-4-<br>hydroxyphenyl | OMe | 50                  | 24   | 76-99             | 71         |
| 15    | 90  | 3,4,5-trimethoxy-<br>phenyl   | Η   | rt                  | 48   | 159-160           | 66         |
| 16    | 9p  | 3,4,5-trimethoxy-<br>phenyl   | OMe | 50                  | 24   | 169-176           | 68         |
| 17    | 9q  | 2-furyl                       | Н   | rt                  | 48   | 180-188           | 70         |
| 18    | 9r  | 2-furyl                       | OMe | rt                  | 48   | 134-140           | 74         |
| 19    | 9s  | 2-thiophenyl                  | Н   | rt                  | 24   | 186-190           | 70         |
| 20    | 9t  | 2-thiophenyl                  | OMe | rt                  | 24   | 230-238           | 76         |

aIsolated yields. bMelting points are uncorrected.

spectroscopy. In the infrared spectrum, the compound **9** exhibited characteristic absorption bands at 1246-1277 and 1016-1119 cm<sup>-1</sup> for the sulfonyl group.<sup>9</sup> Diagnostic signals of compounds **9** were observed at 4.38-6.13 ppm in the <sup>1</sup>H NMR spectra and at 48.5-60.8 ppm in the <sup>13</sup>C NMR spectra for the methine (C-1) unit furnished by aldehdes **7** (or acetals **8**).

In conclusion, we have developed a general and versatile method for the synthesis of 1, 2, 3, 4-tetrahydroisoquinoline-2-sulfonic acids, by the reaction of N-(2-arylethyl)sulfamic acids with aldehydes (or acetals).

## **Experimental Section**

Typical experimental procedure for synthesis of *N*-arylethylsulfamic acid 6. A solution of arylethylamine 5 (10 mmol) and triethylamine (12 mmol) in 30 mL of CHCl<sub>3</sub> was stirred at -5-0 °C and chlorosulfonic acid (10 mmol) was added dropwise so as to maintain the temperature below 0 °C. The solution was acidified with 1 *N* HCl solution to pH 2. The solid that precipitated was filtered to give the desired products 6.

**2-(3-Methoxyphenyl)ethylsulfamic acid (6a)**: Beginning with 3-methoxyphenethylamine (1.51 g), compound **6a** was obtained in 55% yield (1.27 g): mp 144-146 °C; IR (KBr) 3180 (NH), 1288, 1063 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  2.87 (t, *J* = 8.3 Hz, 2H), 3.21 (t, *J* = 8.3 Hz, 2H), 3.75 (s, 3H), 6.79-6.82 (m, 3H), 7.22-7.25 (m, 1H), 10.18 (br s, 1H) ppm; <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  32.5, 45.6, 55.5, 112.9, 114.7, 121.3, 130.2, 139.4, 160.0 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 230.1, found 230.2.

**2-(3,4-Dimethoxyphenyl)ethylsulfamic acid (6b)**: Beginning with 3,4-dimethoxyphen-ethylamine (1.81 g), compound **6b** was obtained in 67% yield (1.75 g): mp 164-170 °C; IR (KBr) 3146 (NH), 1259, 1072 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  2.82 (t, J = 8.3Hz, 2H), 3.19 (t, J = 8.3 Hz, 2H), 3.71 (s, 3H), 3.75 (s, 3H), 6.73 (dd, J = 1.8 Hz and J = 7.8 Hz, 1H), 6.82 (d, J = 1.8 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 10.18 (br s, 1H) ppm; <sup>13</sup>C NMR (DMSO-d<sub>6</sub>)  $\delta$  32.1, 45.9, 56.0, 56.1, 112.6, 113.0, 121.0, 130.2, 184.2, 149.4 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup>260.1, found 260.2.

Typical experimental procedure for synthesis of 1,2,3, 4-tetrahydroisoquinoline-2-sulfonic acid 9. A formic acid (96% in H<sub>2</sub>O, 20 mL) solution of arylethylsulfamic acids 6 (2.0 mmol) and aldehydes 7 (or acetals 8) (2.0 mmol) was stirred, and then the solution was quenched with 1 *N* HCl (50 mL). The solid that precipitated was filtered and then recrystallized from methanol-chloroform to give the desired products 9 (Table 1).

**9a**: IR (KBr) 1269, 1063 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.13 (t, J = 6.4 Hz, 2H), 3.59 (t, J = 6.4 Hz, 2H), 3.73 (s, 3H), 4.39 (s, 2H), 6.75 (d, J = 2.3 Hz, 1H), 6.78 (dd, J = 2.3 Hz and J = 8.4 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  26.3, 45.9, 48.5, 54.9 113.1, 113.4, 120.8, 128.1, 133.1, 159.3 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 242.1, found 242.7.

**9b**: IR (KBr) 1258, 1057 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$ 

3.07 (t, J = 6.4 Hz, 2H), 3.59 (t, J = 6.4 Hz, 2H), 3.74 (s, 6H), 4.38 (s, 2H), 6.77 (s, 1H), 6.79 (s, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  25.6, 46.1, 48.5, 55.4, 55.5, 109.8, 111.5, 120.5, 123.8, 148.2, 148.7 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 272.1, found 272.7.

**9c**: IR (KBr) 1265, 1047 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.05 (ddd, J = 5.5 Hz, J = 5.5 Hz, and J = 17.6 Hz, 1H), 3.18 (ddd, J = 5.5 Hz, J = 8.3 Hz, and J = 17.6 Hz, 1H), 3.45 (ddd, J = 5.5 Hz, J = 8.3 Hz, and J = 13.2 Hz, 1H), 3.69 (ddd, J = 5.5 Hz, J = 5.5 Hz, and J = 13.2 Hz, 1H), 3.74 (s, 3H), 4.18 (dd, J = 7.1 Hz and J = 12.8 Hz, 1H), 4.29 (dd, J = 3.4 Hz and J = 12.8 Hz, 1H), 4.94 (dd, J = 3.4 Hz and J = 7.1 Hz, 1H), 6.79 (d, J = 2.7 Hz, 1H), 6.83 (dd, J = 2.7 Hz and J = 8.7 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H) pm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  25.3, 40.0, 44.6, 55.1, 55.7, 113.7, 113.8, 120.7, 127.9, 134.5, 159.5 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 290.0, found 290.2.

**9d:** IR (KBr) 1273, 1071 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.03 (ddd, J = 5.5 Hz, J = 5.8 Hz, and J = 17.1 Hz, 1H), 3.14 (ddd, J = 5.5 Hz, J = 7.6 Hz, and J = 17.1 Hz, 1H), 3.50 (ddd, J = 5.8 Hz, J = 7.6 Hz, and J = 12.5 Hz, 1H), 3.74 (ddd, J = 5.5 Hz, J = 5.5 Hz, and J = 12.5 Hz, 1H), 3.78 (s, 6H), 4.25 (dd, J = 7.3 Hz and J = 12.9 Hz, 1H), 4.38 (dd, J = 3.6 Hz and J = 12.9 Hz, 1H), 4.97 (dd, J = 3.6 Hz and J = 7.3 Hz, 1H), 6.83 (s, 1H), 7.01 (s, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  24.6, 40.1, 44.7, 55.3, 55.6, 55.8, 109.7, 112.0, 120.4, 125.3, 148.6, 149.5 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 320.0, found 320.2.

**9e:** IR (KBr) 1251, 1049 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$  3.10 (ddd, J = 6.4 Hz, J = 6.4 Hz, and J = 17.5 Hz, 1H), 3.18 (ddd, J = 6.4 Hz, J = 7.1 Hz, and J = 17.5 Hz, 1H), 3.36 (dd, J = 5.0 Hz and J = 17.6 Hz, 1H), 3.40 (dd, J = 6.1 Hz and J = 17.6 Hz, 1H), 3.48 (ddd, J = 6.4 Hz, J = 6.4 Hz, and J = 13.0 Hz, 1H), 3.64 (ddd, J = 5.5 Hz, J = 7.1 Hz, and J = 13.0 Hz, 1H), 3.80 (s, 3H), 4.89 (dd, J = 5.0 Hz and J = 6.1 Hz, 1H), 6.84 (d, J = 2.3 Hz, 1H), 6.91 (dd, J = 2.3 Hz and J = 8.7 Hz, 1H), 7.31 (d, J = 8.7 Hz, 1H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$  22.0, 24.9, 39.6, 51.1, 54.6, 113.5, 113.8, 115.8, 121.1, 127.6, 133.3, 160.2 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 281.1, found 281.7.

**9f**: IR (KBr) 1271, 1071 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.05-3.09 (m, 2H), 3.38 (dd, J = 5.0 Hz and J = 17.9 Hz, 1H), 3.54 (dd, J = 5.5 Hz and J = 17.9 Hz, 1H), 3.54 (dd, J = 5.5 Hz, and J = 12.7 Hz, 1H), 3.69 (ddd, J = 5.5 Hz, J = 7.3 Hz, and J = 12.7 Hz, 1H), 3.69 (ddd, J = 5.5 Hz, J = 7.3 Hz, and J = 12.7 Hz, 1H), 3.76 (s, 3H), 3.77 (s, 3H), 4.97 (dd, J = 5.0 Hz and J = 5.5 Hz, 1H), 6.82 (s, 1H), 6.96 (s, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  22.7, 24.3, 39.5, 50.6, 55.4, 55.6, 109.5, 111.9, 116.8. 120.9, 124.7, 148.4, 149.5 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 311.1, found 311.7.

**9g**: IR (KBr) 1248, 1016 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  1.29 (t, J = 7.1 Hz, 3H) 3.14 (ddd, J = 5.5 Hz, J = 5.7 Hz, and J = 17.2 Hz, 1H), 3.24 (ddd, J = 5.5 Hz, J = 8.7 Hz, and J = 17.2 Hz, 1H), 3.67 (ddd, J = 5.5 Hz, J = 5.7 Hz, and J = 12.3 Hz, 1H), 3.77-3.81 (m, 1H), 3.80 (s, 3H), 4.31 (q, J = 7.1 Hz, 2H), 5.45 (s, 1H), 6.85 (d, J = 2.7 Hz, 1H), 6.89 (dd, J = 2.7 Hz and J = 8.7 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H)

Notes

**9h**: IR (KBr) 1273, 1061 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.33 (t, *J* = 7.3 Hz, 3H) 2.96 (ddd, *J* = 3.2 Hz, *J* = 3.2 Hz, and *J* = 16.5 Hz, 1H), 3.14 (ddd, *J* = 4.1 Hz, *J* = 12.4 Hz, and *J* = 16.5 Hz, 1H), 3.45 (ddd, *J* = 3.2 Hz, *J* = 12.4 Hz, and *J* = 12.4 Hz, 1H), 4.21 (ddd, *J* = 3.2 Hz, *J* = 3.2 Hz, and *J* = 12.4 Hz, 1H), 3.86 (s, 3H), 3.87 (s, 3H), 4.35 (q, *J* = 7.3 Hz, 2H), 5.43 (s, 1H), 6.65 (s, 1H), 6.93 (s, 1H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  14.1, 26.2, 45.9, 56.1, 56.2, 60.8, 64.3, 109.7, 111.2, 124.8, 148.8, 149.8, 149.7, 169.0 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 344.1, found 344.7.

**9i**: IR (KBr) 1246, 1059 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$  3.07 (ddd, J = 6.0 Hz, J = 6.9 Hz, and J = 16.3 Hz, 1H), 3.12 (dd, J = 8.2 Hz and J = 13.9 Hz, 1H), 3.16 (ddd, J = 6.0 Hz, J = 7.1 Hz, and J = 16.3 Hz, 1H), 3.33 (ddd, J = 6.0 Hz, J = 1.4 Hz, and J = 12.6 Hz, 1H), 3.49 (dd, J = 6.4 Hz and J = 13.8 Hz, 1H), 3.53 (ddd, J = 6.0 Hz, and J = 12.6 Hz, 1H), 3.49 (dd, J = 6.4 Hz and J = 13.8 Hz, 1H), 3.78 (s, 3H), 4.77 (dd, J = 6.4 Hz and J = 8.2 Hz, 1H), 6.79 (d, J = 2.3 Hz, 1H), 6.81 (dd, J = 2.3 Hz and J = 8.2 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 7.31-7.35 (m, 3H), 7.37-7.41 (m, 2H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$  25.2, 39.2, 39.8, 54.5, 56.4, 113.1, 113.2, 123.4, 127.5, 127.9, 128.9, 129.4, 132.8, 135.3, 129.7 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 332.1, found 332.7.

**9j**: IR (KBr) 1262, 1061 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$  3.04 (ddd, J = 3.9 Hz, J = 6.2 Hz, and J = 17.4 Hz, 1H), 3.09 (ddd, J = 6.0 Hz, J = 7.6 Hz, and J = 17.4 Hz, 1H), 3.18 (ddd, J = 3.9 Hz, J = 7.6 Hz, and J = 13.3 Hz, 1H), 3.42 (dd, J = 6.0 Hz, J = 6.2 Hz, and J = 13.3 Hz, 1H), 3.42 (dd, J = 7.3 Hz and J = 13.7 Hz, 1H), 3.55 (dd, J = 7.4 Hz and J = 13.7 Hz, 1H), 3.67 (s, 3H), 3.81 (s, 3H), 4.74 (dd, J = 7.3 Hz and J = 7.3 Hz, 1H), 6.42 (s, 1H), 6.81 (s, 1H), 7.31-7.35 (m, 3H), 7.38-7.41 (m, 2H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$  24.5, 39.1, 40.0, 53.8, 55.1, 55.3, 110.3, 111.8, 123.2, 124.0, 127.4, 129.0, 130.0, 135.9, 147.6, 149.0 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 362.1, found 362.7.

**9k**: IR (KBr) 1269, 1067 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.15 (ddd, J = 5.5 Hz, J = 5.5 Hz, and J = 17.4 Hz, 1H), 3.30 (ddd, J = 6.5 Hz, J = 8.7 Hz, and J = 17.4 Hz, 1H), 3.47 (ddd, J = 5.5 Hz, J = 8.7 Hz, and J = 12.9 Hz, 1H), 3.53 (ddd, J = 5.5 Hz, J = 6.5 Hz, and J = 12.9 Hz, 1H), 3.80 (s, 3H), 5.66 (s, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.78 (dd, J = 2.8 Hz and J = 8.7 Hz, 1H), 6.88 (d, J = 2.8 Hz, 1H), 7.35-7.37 (m, 2H), 7.46-7.48 (m, 3H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  25.3, 40.0, 55.0, 59.2, 113.1, 113.6, 123.7, 129.1, 129.4, 129.6, 130.1, 134.2, 137.0, 159.3 ppm. LR FBA MS: calcd for [M-1]<sup>-</sup> 318.1, found 318.7.

**9I:** IR (KBr) 1262, 1063 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$  3.11 (ddd, J = 5.5 Hz, J = 6.0 Hz, and J = 17.4 Hz, 1H), 3.23 (ddd, J = 6.0 Hz, J = 6.4 Hz, and J = 17.4 Hz, 1H), 3.43 (ddd, J = 5.5 Hz, J = 7.3 Hz, and J = 13.0 Hz, 1H), 3.49 (ddd, J = 6.0 Hz, J = 6.4 Hz, and J = 13.0 Hz, 1H), 3.59 (s, 3H), 3.86 (s, 3H), 5.69 (s, 1H), 6.34 (s, 1H), 6.90 (s, 1H), 7.35-7.37 (m, 2H), 7.47-7.49 (m, 3H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$  24.5, 39.5, 55.1, 55.3, 59.3, 110.7, 111.4,

122.9, 124.8, 129.1, 129.7, 129.8, 136.4, 148.3, 149.5 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 348.1, found 348.7.

**9m**: IR (KBr) 1263, 1034 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$  3.12 (ddd, J = 5.5 Hz, J = 5.5 Hz, and J = 17.6 Hz, 1H), 3.30 (ddd, J = 6.2 Hz, J = 8.2 Hz, and J = 17.6 Hz, 1H), 3.46 (ddd, J = 5.5 Hz, J = 8.2 Hz, and J = 12.7 Hz, 1H), 3.53 (ddd, J = 5.5 Hz, J = 6.2 Hz, and J = 12.7 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 5.60 (s, 1H), 6.75 (d, J = 1.9 Hz and J = 8.3 Hz, 1H), 6.79 (s, 2H), 6.84 (d, J = 8.3 Hz, 2H), 6.95 (d, J = 1.9 Hz 1H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$  25.2, 39.8, 54.5, 55.2, 59.7, 112.7, 112.8, 113.5, 115.3, 122.7, 123.6, 127.5, 129.3, 133.5, 147.9, 148.2, 159.7 ppm LR FBA MS: calcd for [M-1]<sup>-</sup> 364.1, found 364.7.

**9n**: IR (KBr) 1260, 1059 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.08 (ddd, J = 6.0 Hz, J = 6.0 Hz, and J = 17.2 Hz, 1H), 3.20 (ddd, J = 6.4 Hz, J = 7.6 Hz, and J = 17.2 Hz, 1H), 3.42 (ddd, J = 6.0 Hz, J = 7.6 Hz, and J = 12.8 Hz, 1H), 3.49 (ddd, J = 6.0 Hz, J = 6.4 Hz, and J = 12.8 Hz, 1H), 3.62 (s, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 5.61 (s, 1H), 6.39 (s, 1H), 6.76 (dd, J = 1.9 Hz and J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz,1H), 6.87 (s, 1H), 6.94 (d, J = 1.9 Hz, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  24.8, 4.04, 55.2, 55.4, 55.9, 59.5, 111.3, 111.6, 113.5, 114.9, 123.2, 123.6, 125.2, 128.0, 147.1, 147.9, 148.4, 149.6 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 394.1, found 394.7.

**90**: IR (KBr) 1277, 1057 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.13 (ddd, J = 5.0 Hz, J = 5.5 Hz, and J = 17.5 Hz, 1H), 3.41 (ddd, J = 6.0 Hz, J = 9.9 Hz, and J = 17.5 Hz, 1H), 3.55 (ddd, J = 5.5 Hz, J = 9.9 Hz, and J = 12.7 Hz, 1H), 3.68 (ddd, J = 5.0 Hz, J = 5.5 Hz, and J = 12.7 Hz, 1H), 3.71 (s, 3H), 3.73 (s, 6H), 3.80 (s, 3H), 6.03 (s, 1H), 6.62 (s, 2H), 6.80 (d, J = 2.8 Hz and J = 8.7 Hz, 1H), 6.87 (d, J = 2.8 Hz, 2H), 6.96 (d, J = 8.7 Hz 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  25.2, 40.6, 54.9, 55.9, 59.8, 59.9, 107.4, 113.1, 113.5, 123.6, 129.4, 132.3, 134.1, 138.8, 153.7, 159.4 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 408.1, found 804.7.

**9p**: IR (KBr) 1261,1051 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.10 (ddd, J = 5.5 Hz, J = 5.7 Hz, and J = 17.4 Hz, 1H), 3.30 (ddd, J = 6.4 Hz, J = 8.0 Hz, and J = 17.4 Hz, 1H), 3.52 (ddd, J = 5.5 Hz, J = 8.0 Hz, and J = 13.8 Hz, 1H), 3.62 (ddd, J = 5.7 Hz, J = 6.4 Hz, and J = 13.8 Hz, 1H), 3.06 (s, 3H), 3.72 (s, 3H), 3.75 (s, 6H), 3.81 (s, 3H), 5.75 (s, 1H), 6.43 (s, 1H), 6.74 (s, 2H), 6.87 (s, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  25.0, 41.0, 54.8, 56.0, 56.2, 56.4, 60.4, 60.9, 107.2, 110.6, 111.2, 122.5, 124.7, 131.5, 138.8, 148.2, 149.3, 153.6 ppm. LR FBA MS: calcd for [M-1]<sup>-</sup> 438.1, found 438.7.

**9q:** IR (KBr) 1246, 1115 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$  3.17 (t, J = 6.4 Hz, 2H), 3.42-3.52 (m, 2H), 5.80 (s, 1H), 6.42 (d, J = 3.2 Hz, 1H), 6.49 (dd, J = 1.8 Hz and J = 3.2 Hz, 1H), 6.83 (dd, J = 2.3 Hz and J = 8.7 Hz, 1H), 6.86 (d, J = 2.3 Hz, 1H), 6.95 (d, J = 8.7 Hz 1H), 7.63 (d, J = 1.8 Hz, 1H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$  24.9, 39.0, 52.2, 54.8, 110.8, 112.9, 113.2, 113.6, 120.7, 128.9, 133.3, 144.7, 148.9, 159.8 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 308.1, found 308.7.

**9r**: IR (KBr) 1265, 1119 cm<sup>-1</sup>; <sup>1</sup>H NMR (methanol-d<sub>3</sub>)  $\delta$ 

3.12 (t, J = 6.4 Hz, 2H), 3.41-3.50 (m, 2H), 3.70 (s, 3H), 3.85 (s, 3H), 5.81 (s, 1H), 6.44 (d, J = 3.2 Hz, 1H), 6.50 (dd, J = 1.8 Hz and J = 3.2 Hz 1H), 6.57 (s, 1H), 6.87 (s, 1H), 7.65 (d, J = 1.8 Hz, 1H) ppm; <sup>13</sup>C NMR (methanol-d<sub>3</sub>)  $\delta$ 24.3, 38.3, 52.1, 55.3, 110.4, 110.8, 111.6, 113.0, 120.4, 124.5, 144.7, 148.4, 148.9, 149.7 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup>338.1, found 338.6.

**9s**: IR (KBr) 1269, 1055 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.17 (ddd, J = 6.4 Hz, J = 7.1 Hz, and J = 17.5 Hz, 1H), 3.23 (ddd, J = 5.9 Hz, J = 6.4 Hz, and J = 17.5 Hz, 1H), 3.48 (ddd, J = 6.4 Hz, J = 6.4 Hz, and J = 12.7 Hz, 1H), 3.54 (ddd, J = 5.9 Hz, J = 7.1 Hz, and J = 12.7 Hz, 1H), 3.80 (s, 3H), 6.06 (s, 1H), 6.82 (dd, J = 2.3 Hz and J = 8.7 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 7.12 (dd, J = 3.2 Hz and J = 5.4 Hz, 1H), 7.25 (d, J = 3.2 Hz, 1H), 7.58 (dd, J = 0.9 Hz and J = 5.4 Hz, 1H), 7.25 (d, J = 3.2 Hz, 1H), 7.58 (dd, J = 0.9 Hz and J = 5.4 Hz, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  25.1, 28.9, 53.5, 55.0, 113.1, 113.6, 123.5, 127.7, 128.5, 129.6, 130.6, 133.6, 139.6, 159.5 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 324.0, found 324.2.

**9t**: IR (KBr) 1263, 1117 cm<sup>-1</sup>; <sup>1</sup>H NMR (acetone-d<sub>6</sub>)  $\delta$  3.16 (t, J = 6.4 Hz, 2H), 3.47-3.56 (m, 2H), 3.79 (s, 3H), 3.80 (s, 3H), 6.13 (s, 1H), 6.60 (s, 1H), 6.85 (s, 1H), 7.07 (dd, J = 3.2 Hz and J = 5.0 Hz, 1H), 7.35 (d, J = 3.2 Hz, 1H), 7.53 (dd, J = 0.9 Hz and J = 5.0 Hz, 1H) ppm; <sup>13</sup>C NMR (acetone-d<sub>6</sub>)  $\delta$  24.3, 38.5, 53.2, 55.3, 55.4, 111.2, 111.5, 123.1, 124.7, 127.7, 128.5, 130.7, 139.7, 148.2, 149.7 ppm; LR FBA MS: calcd for [M-1]<sup>-</sup> 354.1, found 354.1.

Acknowledgements. This work was supported by grant No. R01-2001-000-00133-0 from the Korea Science & Engineering Foundation.

## References

1. (a) Padwa, A.; Beall, L. S.; Heidelbauugh, T. M.; Liu, B.;

Notes

Sheehan, S. M. J. Org. Chem. 2000, 65, 2684. (b) Glunewald, G. L.; Dahanukar, V. H.; Teoh, B.; Criscione, K. R. J. Med. Chem. 1999, 42, 1982. (c) Minor, D. L.; Wyrick, S. D.; Charifson, P. S.; Watts, V. J.; Nochols, D. E.; Mailman, R. B. J. Med. Chem. 1994, 37, 4328.

- (a) Shinohara, T.; Toda, J.; Sano, T. Chem. Pharm. Bull. 1997, 45(5), 813. (b) Ornstein, P. L.; Arnold, M. B.; Allen, N. K.; Bleisch, T.; Borromeo, P. S.; Lugar, C. W.; Leander, J. D.; Lodge, D.; Schoepp, D. D. J. Med. Chem. 1996, 39, 2219. (c) Munchhof, M. J.; Meyers, A. I. J. Org Chem. 1996, 61, 4607. (d) Carifson, P. S.; Bowen, J. P.; Wyrick, S. D.; Hoffman, A. J.; Cory, M.; McPhail, A. T.; Mailman, R. B. J. Med. Chem. 1989, 32, 2050. (f) Clark, M. T.; Adejare, A. G.; Feller, D. R.; Miller, D. D. J. Med. Chem. 1987, 30, 86. (g) Battersby, A. R.; Southgate, R.; Staunton, J.; Hurst, M. J. Chem. Soc. (C) 1966, 1052.
- (a) Eric, D.; Cook, J. M. Chem. Rev. 1995, 95(6), 1797. (b)
  Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 151.
- (a) Speckamp, W. N.; Moolenar, M. J. *Tetrahedron* 2000, 56, 3817. (b) Venkov, A. P.; Lukanov, L. K. *Synthesis* 1989, 59. (c) Mollov, N. M.; Venkov, A. P. *Synthesis* 1978, 62.
- (a) Barn, D. R.; Caulfield, W. L.; Cottney, J.; MaGurk, K.; Morphy, J. R.; Rankovic, Z.; Roberts, B. *Bioorg. & Med.* 2001, *9*, 2609. (b) Kohno, H.; Sekine, Y. *Heterocycles* 1996, *42*(1), 141. (c) Lukanov, L. K.; Venkov, A. P.; Mollov, M. *Synthesis* 1987, 204.
- (a) Lee, J. S.; Yang, I. D.; Kim, S. H.; An, S. I.; Lee, C.-H. Bull. Korean Chem. Soc. 2003, 24(1), 129. (b) Lee, J. D.; Lee, C.-H.; Nakamura, H.; Ko, J.; Kang, S. O. Tetrahedon Lett. 2002, 43, 5483. (c) Lee, J. S.; Lee, C.-H. Bull. Korean Chem. Soc. 2002, 23(1), 167. (d) Lee, J. S.; Lee, C.-H. J. Korean Chem. Soc. 2001, 45, 92. (e) Kong, Y. J.; Kim, S. H.; Lee, C.-H. J. Korean Chem. Soc. 1999, 43, 131. (f) Lee, C.-H.; Kohn, H. J. Heterocyclic Chem. 1990, 27, 2107. (g) Lee, C.-H.; Kohn, H. J. Org. Chem. 1990, 55, 6098. (h) Lee, C.-H.; Kohn, H. Heterocycle 1988, 27, 2581.
- (a) Kim, B. M.; So, S. M. *Tetrahedron Lett.* **1998**, *39*, 5381. (b) Benson, G. A.; Spillane, W. J. *Chem. Rev.* **1980**, *80*, 151.
- (a) Shi, D.-F.; Bradshaw, T. D.; Chua, M.-S.; Westwell, A. D.; Stevens, M. F. *Bioorg. & Med. Chem. Lett.* **2001**, *11*, 1093. (b) Curran, W. V.; Ross, A. A.; Lee, V. J. J. Antibiot. **1988**, *XLI*(10), 1418.
- 9. Nakanish, K.; Solomon, P. H. *Infrared Absorption Spectroscopy*; Holden-Day: San Francisco, 1977.