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Artificial neural networks (ANNs), for a first time, were successfully developed for the modeling and
prediction of solvent effects on rate constant of [2+2] cycloaddition reaction of diethyl azodicarboxylate with
ethyl vinyl ether in various solvents with diverse chemical structures using quantitative structure-activity
relationship. The most positive charge of hydrogen atom (q+), dipole moment (µ), the Hildebrand solubility
parameter (δH

2) and total charges in molecule (qt) are inputs and output of ANN is log k2 . For evaluation of the
predictive power of the generated ANN, the optimized network with 68 various solvents as training set was
used to predict log k2 of the reaction in 16 solvents in the prediction set. The results obtained using ANN was
compared with the experimental values as well as with those obtained using multi-parameter linear regression
(MLR) model and showed superiority of the ANN model over the regression model. Mean square error (MSE)
of 0.0806 for the prediction set by MLR model should be compared with the value of 0.0275 for ANN model.
These improvements are due to the fact that the reaction rate constant shows non-linear correlations with the
descriptors.
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relationship, Multi-parameter linear regression

Introduction

Solvent effects play a key role in many chemical and
physical processes in solutions, therefore it has been of the
highest interest to develop quantitative structure-activity
relationships (QSARs) which reflect intermolecular
interactions in dense media.1-3 To obtain a significant
correlation, it is crucial that appropriate descriptors be
employed, whether they are empirical or theoretical.2-9 The
linear solvation energy relationship (LSER) descriptors
based on linear free energy relationship (LFER) are
demonstrated to be successful in correlating a wide range
of chemical and physical properties involving solute-
solvent interactions as well as biological activities of
compounds.3 A major step forward in applying LSER to
solute-solvent interactions was the work of Kamlet and
Taft.10-13 The original LSER descriptors (also called the
solvatochromic descriptors) were derived from UV-Vis
spectral shifts of indicator dyes.1 Thus their ability to make
a priori predictions have been somewhat limited because of
their empirical origin. Based on the LSER philosophy, a set
of theoretical parameters for correlating a wide variety of
properties has been developed.13-19 These theoretical linear
solvation energy relationship (TLSER) descriptors are
summarized in Table 1. In Table 1, Vm is molecular volume
of solvent that can be replaced by Hildebrand solubility
parameter (δH

2); the values of δH
2 are easily available in

literature for most solvents.8 The polarizability term (πI) is
obtained by dividing the polarizability volume by the

molecular volume to produce a unitless, size independent
quantity, which indicates the ease with which the electron
cloud may be moved or polarized. Dipole moment (µ) and
total charges in molecule (qt) terms demonstrate dipole-
dipole interactions. The hydrogen-bond donating ability is
divided into two components: εA (the energy difference
between the εHOMO of water and εLUMO of solvent) and q+

(the most positive charge of a hydrogen atom) of solvent
molecule. Analogously, the hydrogen-bond accepting
ability is divided into two components: εB (the energy
difference between the εLUMO of water and εHOMO of
solvent) and q− (the most negative atomic charge) of
solvent. 

Various methods for constructing QSAR models have
been used including multi-parameter linear regression
(MLR), principal component analysis (PCA) and partial
least-squares regression (PLS). In addition, artificial neural
networks (ANNs) have become popular due to their success
where complex non-linear relationships exist amongst
data.20 ANNs are biologically inspired computer programs
designed to simulate the way in which the human brain
processes information.21,22 ANNs gather their knowledge by
detecting the patterns and relationships in data and learned
(or trained) through experience, not from programming.
Moreover, ANNs may consider not only particular molecular
characteristics, but also interrelations and interdependences
between mutually influencing molecular descriptors. The
wide applicability of ANNs stems from their flexibility and
ability to model non-linear systems without prior knowledge
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of an empirical model. Neural networks do not need on
explicit formulation of the mathematical or physical
relationships of the handled problem. These give ANNs an
advantage over traditional fitting methods for some chemi-
cal application. For these reasons in recent years, ANNs
have been used to a wide variety of chemical problems such
as simulation of mass spectra, ion interaction chromatog-
raphy, aqueous solubility and partition coefficient, simula-
tion of nuclear magnetic resonance spectra, prediction of
bioconcentration factor and prediction of various physico-
chemical properties of compounds.23-35

Modeling of solvent effects is one of the most useful
methods to obtain information about the mechanism of
organic reactions. Detailed kinetic studies on cycloaddition
reactions have been restricted to [2+4] and [2+3] cyclo-
addition reactions. Therefore, we have studied solvent effects
on [2+2] cycloaddition reaction of diethyl azodicarboxylate
with ethyl vinyl ether in various solvents using solvato-
chromic descriptors (Scheme 1).5 Because of their empirical
origin of solvatochromic descriptors of solvents, their ability
to make a priori predictions have been somewhat limited.36 

The main aim of the present work is to develop a QSAR
model based on theoretical descriptors using ANNs for
modeling and prediction, for a first time, solvent effects on
the rate constant of [2+2] cycloaddition reaction in various
solvents with diverse chemical structures. In the first step, a
MLR model was constructed. Then for inspection of non-
linear interactions/relations between different parameters of
solvents in the model, an ANN model was generated for the
prediction of the reaction rate constant and the results were
compared with the experimental values.

Theory

A detailed description of theory behind neural networks
has been adequately described by different researchers.21,22

There are many types of neural networks designed by now
and new ones are invented every week, but the behavior of
a neural network is determined by transfer functions of its
neurons, by learning rule, and by the architecture itself. An
ANN is formed from artificial neuron or processing
elements (PE), connected with coefficients (weights),
which constitute the neural structure and are organized in
layers. The first layer is termed the input layer, and the last
layer is the output layer. The layers of neurons between the
input and output layers are called hidden layers. The
number of neurons in the input and output layers are
defined by systems properties. The number of neurons in
the hidden layer could be considered as an adjustable
parameter, which should be optimized. The input layer
receives the experimental or theoretical information and
the output layer produces the calculated values of depend-
ent variables. ANNs allow one to estimate relationships
between input variables and one or several output
dependent variables. The use of ANNs consists of two
steps: “training” and “prediction”. In the training phase the
optimum structure, weight coefficients and biases are
searched for. These parameters are found from a training
data set. After the training phase, the trained network can
be used to predict (calculate) the outputs from a set of
inputs. There are many types of network architectures, but
the type that has been most useful for QSAR/QSPR studies
is the multiplayer feedforward network with back-
propagation (BP) learning rule.22 Information from inputs
is fed forward through the network to optimize the weights
between neurons. The ANN reads the input and target
values in the training data set and changes the values of the
weighted links to reduce the difference between the
calculated output and target values. The error between
output and target values is minimized across many training
cycles until network reaches specified level of accuracy. If
a network is left to train for too long, however, it will
overtrain and will lose the ability to generalize.33 

Experimental Section

Data set. Recently, we have studied solvent effects on rate
constant of [2+2] cycloaddition reaction of diethyl azodi-
carboxylate with ethyl vinyl ether.5 In the present work, the

Table 1. The theoretical descriptors used in MLR and ANN modelsa

Symbol Name Definition Units

 Vm Molecular volume Molecular volume Å3

 πI Polarizability index Polarizability/Vm none
 εA Covalent HB acidity 0.3-0.01 (El-Ehw) heV
 q+ Electrostatic HB acidity Maximum (+) charge on an H atom acu
 εB Covalent HB basicity 0.3-0.01 (Elw−Eh) heV
 q− Electrostatic HB basicity Maximum (−) charge on an atom acu
 qt Total charge Total charge on molecule acu
µ Dipole moment Dipole moment D

aHev = hecto-electron volt (1 heV = 100 ev = 9.6485 × 103 kJmol−1); acu = atomic charge unit; D = debye;  HB = hydrogen bond; El = LUMO energy;
Eh = HOMO energy; Elw and Ehw refer to the LUMO and HOMO energy of water, respectively. 

Scheme 1
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values of log k2 in 84 various solvents calculated from
correlation equation of log k2 versus dipolarity-polarizability
and hydrogen-bond donor acidity of media. The theoretical
descriptors have been calculated by optimizing geometries
of the solvents by ab initio method (at the RHF/6-31G* level
of the theory).36 All of the calculation have been
accomplished using the Gaussian 98 package.37 The data set
was randomly divided into two groups: a training set and a
prediction set consisting of 68 and 16 molecules, respectively.
The prediction set is a good representative of the training set.
The training set was used for the model generation and the
prediction set was used for the evaluation of generated
model.

Linear correlations. Multi-parameter linear regression
model was developed for prediction of solvent effects on
the reaction rate constant by various descriptors. The
method of stepwise multi-parameter linear regression was
used to select the most important theoretical descriptors
and to calculate the coefficients relating theoretical
descriptors to the log k2 of the reaction. The multi-param-
eter linear model was generated using spss/pc software
package.

Neural network generation. The specification of a
typical neural network model requires the choice of the type
of inputs, the number of hidden layers, the number of
neurons in each hidden layer and the connection structure
between the inputs and the output layers. Three-layer
network with sigmoidal transfer function for neurons was
designed. The initial weights were randomly selected be-
tween 0 and 1. Before training, the input and output values
were normalized between 0.1 and 0.9. The number of input
nodes in the neural networks was equal to the number of
theoretical descriptors in the MLR model and the number of
nodes in hidden layer was optimized. The optimizations of
the weights and biases were carried out according to
Levenberg-Marquardt algorithms for back-propagation of
error, which, although requiring far more extensive com-
puter memory, is significantly faster than other algorithms
based on gradient descent.38 For evaluation of the prediction
power of the network, the trained ANN was used to predict
log k2 of the reaction in 16 various solvents included in the
prediction set. The performances of training and prediction
of ANN are evaluated by individual percentage deviation
(IPD) and mean square error (MSE), which are defined as
follows:

(1) 

 (2)

where  and  are experimental and calculated values
of log k2 with MLR and ANN models and N denotes number
of data points. 

The processing of the data was carried on Intel Pentium III
processor, 800 MHz PC with 256 Mb of RAM in windows

XP environment using Matlab 6.5.39 The neural networks
were implemented using Neural Network Toolbox Ver. 4.0
for Matlab.40 

Results and Discussion 

Multi-parameter linear correlation of log k2 of the reaction
vs. the eight descriptors for 68 solvents in the training set
gives equation (3). 

log k2 = 6.126( ± 0.157) + 0.774( ± 0.272) δH
2 

 + 4.312( ± 0.434) q+ + 0.129( ± 0.034) µ 
 − 0.0578( ± 0.027)qt (3)

(n = 68, r = 0.898, s.e = 0.2941, F4,63 = 65.92)
βδH2 = 0.222, βq+ = 0.667, βµ = 0.253, βqt = −0.126

Effects of q+, µ and δH
2 on the reaction rate are higher

than that of the qt, because standardized coefficients of q+,
µ and δH

2 are higher than that of the qt. It is clear that rate
of the reaction increases with increasing q+, δH

2 and µ.
Because polarity of the activated complex is higher than
that of the reactants of the reaction,5 therefore, hydrogen-
bonding and dipole-dipole interactions between the
activated complex and molecules of solvent are higher than
that of the reactants. For this reason, the reaction rate
increases with increasing solvent electrostatic acidity and
dipole moment. The results are comparable with corre-
lation of log k2 with empirical descriptors of solvents,
because the second-order rate constant of the reaction
increases with increasing dipolarity/polarizability and
hydrogen-bonding acidity of the medium. Therefore, the
increase in the rate constant was attributed to a major
interaction of polar media with the activated complex
relative to the reactants. 

The next step in this work was the generation of the
artificial neural network. ANN consists of four inputs, the
same as the number of descriptors in the MLR model, and
one output for log k2 of the reaction. There are no rigorously
theoretical principles for choosing the proper network
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Figure 1. Plot of MSE for training and prediction sets versus the
number of neurons in hidden layer.
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Table 2. Experimental and calculated values of −log k2 of the reaction for training and prediction sets by multi-parameter linear regression
(MLR) and artificial neural network (ANN) models along with individual percent deviation (IPD)a 

No. Solvent −log k2 MLR IPD (MLR) ANN IPD (ANN)

Training set
1 Hexane 5.9437 5.5094 1−7.306 5.9636 −0.335
2 Cyclohexane 5.767 5.4313 1−5.821 5.7292 −0.66
3 Benzene 4.9245 5.1313 1−4.1992 4.9777 −1.08
4 Toluene 5.0931 5.0835 1−0.188 5.0144 −1.55
5 o-xylene 4.9479 5.183 1−4.7521 4.9957 −0.966
6 p-xylene 5.0443 5.2554 1−4.1853 5.0472 −0.057
7 Cumene 5.1085 5.2526 1−2.8202 5.0472 −1.2-
8 Flurobenzene 4.7713 4.8747 1−2.1671 4.9155 −3.022
9 Chlorobenzene 4.6749 4.6833 1−0.1801 4.7076 −0.699
10 Bromobenzene 4.5304 4.6738 1−3.1655 4.6599 −2.858
11 o-dichlorobemzene 4.5304 4.485 1−1.002 4.6216 −2.013
12 1,2,4-trichlorobenzene 4.707 4.5574 1−3.178 4.4947 −4.51
13 1,1,1,-trichlorobenzene 5.0604 4.6664 1−7.787 5.0887 −0.559
14 Chloroform 4.5633 4.4156 1−3.238 4.5590 −0.09
15 Bromoform 4.7032 4.3777 1−6.921 4.6809 −0.47
16 1,1,2,2-tetrachloroethane 4.2413 4.3736 1−3.1184 4.3867 −3.428
17 Methanol 3.4696 3.4384 1−0.9 3.4861 −0.476
18 Ethanol 3.6091 3.6416 1−0.8997 3.5951 −0.39
19 2-propanol 3.8356 3.8135  1−0.575 3.8936 −1.512
20 Butanol 3.8689 3.813  1−1.445 3.9318 −1.626
21 2-butanol 4.1855 3.8422  1−8.201 3.8943 −6.96
22 2-methyl2-propanol 4.5369 3.9406 −13.14 4.2988 −5.25
23 Pentanol 3.9814 3.8496   −3.312 4.0337 −1.314
24 Isopentanol 3.9814 3.899   −2.071 4.1458 −4.129
25 Hexanol 4.0358 3.9343   −2.516 4.1572 −3.008
26 Octanol 4.0766 4.0382 1−0.941 4.1879 −2.73
27 Benzyl alcohol 3.3765 3.7494 −11.044 3.6151 −7.066
28 2-chloroethanol 3.2862 3.7795 −15.01 3.3603 −2.255
29 Trifluroethanol 2.5395 3.7 −45.7 2.5397 −0.008
30 Allyl alcohol 3.7886 3.714 1−1.97 3.9239 −3.571
31 2-methoxy ethanol 3.6196 3.5121   −2.971 3.5076 −3.09
32 2-cyano ethanol 3.0434 3.3303 1−9.4276 3.1084 −2.136
33 Dipropyl ether 5.3334 5.3048 1−0.537 5.3860 −0.986
34 Dioxane 4.8761 5.2206 1−7.064 4.9890 −2.315
35 Tetrahydrofuran 4.8665 4.9358 1−1.4242 4.8654 −0.02
36 Nitromethane 4.2631 4.2398 1−0.546 4.2067 −1.32
37 Nitrobenzene 4.3858 4.1371 -−5.67 4.2540 −3.01
38 Benzaldehyde 5.0604 4.5173 −10.73 4.7460 −6.21
39 2-butanone 4.7217 4.78 1−1.2339 4.8213 −2.109
40 Acetophenone 4.4117 4.5581 1−3.3187 4.5094 −2.215
41 Diethyl amine 5.1641 4.5893 −11.13 5.1604 −0.07
42 Triethyl amine 5.6225 5.3909 1−4.12 5.5833 −0.70
43 Benzyl amine 4.2176 4.3483 1−3.0982 4.2478 −0.716
44 Piperidine 4.964 4.5135 1−9.076 4.9840 −0.403
45 Tributyl amine 5.6706 5.5798 1−1.601 5.6813 −0.189
46 Aniline 3.6787 4.1596 −13.073 3.7513 −1.974
47 N-methyl aniline 4.2187 4.2708 1−1.2338 4.2471 −0.673
48 2-chloroaniline 4.0938 3.991 -−2.51 3.9522 −3.46
49 Pyridine 4.3698 4.6911 1−7.3527 4.5695 −4.57
50 2-methyl pyridine 4.6107 4.8434 1−5.0467 4.6476 −0.8
51 2,4-dimethyl pyridine 4.4501 4.9013 −10.14 4.7016 −5.652
52 2-bromo pyridine 4.1931 4.3628 1−4.0469 4.2570 −1.524
53 Morpholine 4.1839 4.3409 1−3.7518 4.2253 −0.99
54 Pyrrolidine 4.9229 4.4614 -−9.375 5.0131 −1.832
55 N,N-dimethyl acetamide 4.4019 4.5153 1−2.5753 4.4187 −0.382
56 Formamide 3.2429 2.8301 −12.73 3.2685 −0.789
57 N,N-dimethyl formamide 4.4295 4.4789 1−1.115 4.5882 −3.583
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architecture, so different structures were tested in order to
obtain the optimal number of neurons in hidden layer and
training cycle. Three-layer network with a sigmoidal transfer
function were designed for ANN. Before training the
network, the number of nodes in the hidden layer was
optimized. In order to optimize the number of nodes in the
hidden layer, several training sessions were conducted with
different numbers of hidden nodes (from one to fourteen).
The mean squared error of training (MSET) and prediction
(MSEP) sets were plotted versus the number of iterations for
different number of neurons at the hidden layer and the
minimum value of MSEP was recorded as the optimum
value. Plot of MSET and MSEP versus the number of nodes
in the hidden layer has been shown in Figure 1. It is clear
that ten nodes in hidden layer is optimum value. Then an
ANN with architecture 4-10-1 was generated using the four
descriptions q+, δH

2, µ and qt appearing in the MLR model as
inputs. 

It is note worthy that training of the network was stopped
when the MSEP started to increases i.e. when overtraining
begins. The overtraining causes the ANN to loose its
prediction power. Therefore, during training of the networks,

it is desirable that iterations are stopped when overtraining
begins. To control the overtraining of the network during the

Table 2. Continued

No. Solvent −log k2 MLR IPD (MLR) ANN IPD (ANN)

58 Methyl formate 4.8837 4.8675 −0.331 4.7245 −3.26
59 Ethyl formate 4.7873 4.8717 −1.7622 4.5871 −4.18
60 Methyl ethanoate 4.9801 4.9098 −1.413 4.7627 −4.37
61 Propyl ethanoate 4.9158 4.9988 −1.689 4.8635 −1.06
62 Methyl benzoate 4.5625 4.7183 −3.415 4.4611 −2.22
63 Ethyl benzoate 4.6749 4.817 −3.0386 4.6302 −0.96
64 Ethyl trichloroacetate 4.8676 4.8758 −0.1689 4.8852 −0.362
65 Diethyl sulfate 4.7713 4.7767 −0.1132 4.7768 −0.115
66 Sulfolane 4.3216 4.1193 −4.681 4.3464 −0.574
67 Diethyl sulfide 5.0604 5.1065 −0.9108 5.0137 −0.92
68 Anhydride acetic 4.5464 4.5985 −1.1451 4.5733 −0.592

Prediction set

69 Octane 5.7509 5.5679 −3.183 5.9356 −3.212
70 m-xylene 5.0122 5.19157 −3.5787 5.0208 −0.172
71 m-dichlorobenzene 4.7231 4.567 −3.305 4.5863 −2.9-0
72 Propanol 3.6904 3.7436 −1.4418 3.6915 −0.03
73 Isobutanol 4.0494 3.8347 −5.302 4.0250 −0.6-0
74 Cyclohexanol 4.146 3.8884 −6.213 3.8149 −7.99
75 Diethyl ether 5.3816 5.2054 −3.274 5.3482 −0.62
76 Cyclohexanone 4.6749 4.7634 −1.8939 4.7005 −0.548
77 Butyl amine 5.2011 4.4884 −13.7 4.8296 −7.14
78 N,N-dimethyl aniline 4.5464 5.1067 −12.323 4.7692 −4.901
79 2-cyano pyridine 3.8398 3.9817 −3.6955 3.9847 −3.774
80 Pyrrole 3.603 3.8617 −7.1796 3.6765 −2.04
81 N,N-diethyl formamide 4.4822 4.6388 −3.4932 4.6357 −3.425
82 Ethyl ethanoate 4.7122 4.964 −5.3432 4.8683 −3.313
83 Dimethyl sulfate 4.6428 4.6064 −0.785 4.5923 −1.09
84 Dimethyl sulfoxide 4.0768 4.2956 −5.3672 4.1805 −2.544

a−log k2 refers to experimental data; the rate of the reaction have been studied spectrophotometrically by monitoring the decrease in diethyl
azodicarboxylate absorbance in 405 nm at 30 ºC; MLR and ANN refer to multi-prameter linear regression and artificial neural network calculated
values of −log k2, respectively. 

Figure 2. Plot of the calculated values of −log k2 from MLR model
versus the exprimental values of it. 
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training procedure, the values of MSET and MSEP were
calculated and recorded to monitor the extent of the learning
for various iterations. Results obtained showed that after 150
iterations the value of MSEP started to increase and
overfitting began. The generated ANN was then trained
using the training set for the optimization of the weights and
biases. For evaluation of the prediction power of the
network, the trained ANN was used to predict log k2 of the
reaction for 16 various solvents included in the prediction
set.

The experimental and calculated values of the log k2 for
training and prediction sets along with IPD by the MLR and
ANN models are given in Table 2. 

Figure 2 and 3 show the plot of the MLR and ANN
calculated against experimental values of log k2 of the
reaction. The IPD of the ANN calculated values of log k2 are
plotted against the experimental values of it (Fig. 4). The
propagation of errors in both sides of zero indicates that
systematic error does not exist in development of the neural
network.

Table 3 compares the results obtained using the MLR and
ANN models. The correlation coefficients (R), MSE and F-
value of these models show the superiority of the ANN over
that of the MLR model for prediction of log k2 of the
reaction. The MSE of 0.0802 and 0.0806 for the training and
prediction set for MLR model should be compared with the
values of 0.0132 and 0.0275 for ANN model with archi-
tecture 4-10-1. It can be seen from Table 3 that although the

parameters appearing in the MLR model are used as inputs
for the generated ANN, the statistics shows a large
improvement. These improvements are due to the fact that
the reaction rate constant shows non-linear correlations with
the descriptors.

Conclusions

A four-descriptor nonlinear computational neural network
model has been developed for prediction of solvent effects
on rate constant of [2+2] cycloaddition reaction of diethyl-
azodicarboxylate with ethyl vinyl ether in various solvents
with diverse chemical structures using quantitative structure-
activity relationship. Comparison of the values of MSE for
training and prediction sets (and other statistical parameters
in Table 3) for MLR and ANN models shows superiority of
the ANN model over the regression model. Mean square
error (MSE) of 0.0806 for the prediction set by MLR model
should be compared with the value of 0.0275 for ANN
model. Since the improvement of the results obtained using
nonlinear model (ANN) is considerable, it can be concluded
that the nonlinear characteristics of solvent effects on the
rate constant is serious. 
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