An Efficient Synthesis of α-Amino-δ-valerolactones by the Ugi Five-Center Three-Component Reaction[†]

Young Bae Kim,[‡] Soo Jung Park, Gyochang Keum, Min Seok Jang, Soon Bang Kang, Duck Hyung Lee,[‡] and Youseung Kim^{*}

Biochemicals Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea ^{*}Department of Chemistry, Sogang University, Seoul 121-742, Korea Received March 27, 2002

A novel approach to α -amino- δ -valerolactone derivatives **8** by the intramolecular Ugi five-center threecomponent reaction (U-5C-3CR) using the multifunctional starting material, L-pentahomoserine **5** is described.

Key Words : Multicomponent reactions, Combinatorial chemistry, Ugi reaction, L-Pentahomoserine, Glycolaldehyde dimer

Introduction

Multicomponent reactions (MCRs) are reactions of three or more reactants combine in a one-pot procedure to produce a single product, which contains at least a part of every reactant. The product is formed by several individual reactions, which occur simultaneously or sequentially in a single reaction step without the intermediates being isolated.¹ MCRs, by virtue of their synthetic potential, their easy performance, and the generation of molecular diversity, have attracted much attention because of the advantages that they offer to the field of combinatorial chemistry. Libraries based on MCRs have far greater constitutional variety than those based on conventional reaction.²⁻⁶ The Ugi fourcomponent reaction (U-4CR), which is the most prominent example among the MCRs, is a condensation reaction of four components, *i.e.*, a carboxylic acid, a primary amine, an aldehyde or ketone, and an isocyanide react in a one-pot manner to afford an N-substituted acyl amino amide 1 (Scheme 1), introducing four independently varying R groups in one reaction.^{7,8}

Several studies have attempted to broaden the scope of structure that are accessible by the U-4CR, either through postcondensation transformations or by using bifunctional starting materials.⁹ Thus easy and effective syntheses of a variety of heterocyclic ring systems including lactams,⁹⁻¹³ hydantoins,^{14,15} tetrazoles,¹⁶ imidazoles,¹⁷ pyrroles,¹⁸⁻²⁰ diketo-

[†]This paper is dedicated to Professor Sang Chul Shim for his distinguished achievements in chemistry.

piperazines,^{21,22} ketopiperazines,²³⁻²⁵ and benzodiazepines^{26,27} have been established. During our extensive work with the Ugi reaction, we were recently able to develop a multicomponent reaction for the synthesis of various new skeleton molpholin-2-one derivatives **2** and **3** by using bifunctional starting material, glycolaldehyde dimer that have an aldehyde functional group and a hydroxy functional group.²⁸ We were also able to demonstrate that novel α -aminobutyrolactones **4** were successfully synthesized by employing multifunctional groups (an amine, a carboxylic acid, and a hydroxy group).²⁹ These syntheses are characterized as a one pot reaction involving five different functional groups and three different components, Ugi five-center threecomponent reaction (U-5C-3-CR).

To expand the structural diversity accessible through this type of U-5C-3CR, we have used several functionalized compounds as one component of the multicomponent condensation reaction. In this article, we describe the synthesis of *N*-carbamoyImethyl- α -amino- δ -valerolactone

Scheme 2

^{*}Corresponding Author. e-mail: yosekim@kist.re.kr; Fax: +82-2-958-5189

Table 1. Synthesis of α -Amino- δ -Valerolactones **8** by the Ugi Five-Center Three-Component Reaction Using L-Pentahomoserine **5**

	ÇO₂H	ö	+ - CF₀C	наон ($R_2 R_3$
но、		$R_1 + R_2^+$	R ₃ −N≡C <u></u> 30		∕^Ņ′	~м_н
	5	6	7		н 8	0
Entry	R_1	R ₂	R ₃	Time (hr)	Yield (%)	Ratio ^a
1^b	Me ₂ CH	Н	Me ₃ C	24	58	6:4
2	Me ₃ C	Н	Me ₃ C	24	93	4:6
3	(CH ₂) ₅		Me ₃ C	5	63	_
4	Ph	Н	Me ₃ C	5	81	7:3
5	4-MeOPh	Н	Me ₃ C	5	92	6:4
6	3-MeOPh	Н	Me ₃ C	5	59	7:3
7	2-MeOPh	Н	Me ₃ C	5	70	6:4
8	4-MePh	Н	Me ₃ C	5	89	7:3
9	4-t-BuPh	Н	Me ₃ C	5	95	7:3
10	4-FPh	Н	Me ₃ C	5	66	7:3
11	3-FPh	Н	Me ₃ C	5	65	8:2
12	4-ClPh	Н	Me ₃ C	5	74	6:4
13	3-ClPh	Н	Me ₃ C	5	63	6:4
14	2-ClPh	Н	Me ₃ C	5	77	8:2
15	3-BrPh	Н	Me ₃ C	5	77	8:2
16	2-BrPh	Н	Me ₃ C	5	73	7:3
17	4-NCPh	Н	Me ₃ C	5	83	8:2
18	3-NCPh	Н	Me ₃ C	5	81	8:2
19	4-CF ₃ Ph	Н	Me ₃ C	5	75	7:3
20	2-CF ₃ Ph	Н	Me ₃ C	5	76	8:2
21	4-Pyridyl	Н	Me ₃ C	5	78	7:3
22	3-Pyridyl	Н	Me ₃ C	5	78	8:2
23	2-Pyridyl	Н	Me ₃ C	5	77	6:4
24	1-Naphthyl	Н	Me ₃ C	5	57	5:5
25	2-Furyl	Н	Me ₃ C	5	88	7:3
26	Me ₂ CH	Н	PhCH ₂	5	51	5:5
27	Me ₂ CH	Н	EtO ₂ CCH ₂	5	69	5:5
28	Me ₃ C	Н	PhCH ₂	5	69	6:4
29	Me ₃ C	Н	EtO ₂ CCH ₂	5	46	3:7
30	4-MeOPh	Н	EtO ₂ CCH ₂	2	58	4:6
31	4-FPh	Н	PhCH ₂	5	65	3:7
32	4-FPh	Н	EtO ₂ CCH ₂	5	58	2:8

^aThe diastereomeric ratio was determined either by ¹H NMR or by GC of the crude mixture. ^bAll new compounds were characterized by IR, ¹H and ¹³C NMR, and HRMS data.

8, one carbon extended lactone compared with **4**, through U-5C-3CR using appropriate an aldehydes or ketones **6**, an isocyanides **7**, and a L-pentahomoserine **5** bearing an amine, a carboxylic acid, and an alcohol functional group as a functionalized starting material (Scheme 2). The compound **8** of the general structure is of interest due to certain biological activities such as immuno suppressant, anti-allergy, asthma, and antineoplastic agents.^{30,31}

Results and Discussion

In our initial experiment, the starting material L-pentahomoserine 5 was prepared from the L-glutamic acid 5methyl ester in high yield in three steps following known procedures.³²⁻³⁴ The reaction in 2,2,2,-trifluoroethanol expectedly provided the desired α -amino- δ -valerolactones 8 in moderate to excellent yields as a mixture of diastereomers in varying ratios as shown in the Table 1. It is necessary to use 2,2,2,-trifluloroethanol as a solvent for the formation of 6membered cyclic lactone 8 in order to generate the desired sole product and obtain better yields. Results obtained by using solvents other than 2,2,2,-trifluloroethanol such as THF, CH₃CN, and DMF were unsatisfactory. The reaction yields largely depend on the chosen aldehydes and isocyanides. In spite of various substrates used, however, the 6membered lactone derivatives 8 showed poor diastereoselectivity compared with the previously reported 5-membered lactones 4.27

The proposed reaction mechanism for the formation of **8** through the U-5C-3CR is summarized in Scheme 3. The addition of the isocyanide **7** to the imine **I** derived from condensation of the amino function of **5** with **6** produced the intermediate **II**. The attack of the carboxylate on the nitrilium carbon of **II** followed by the internal hydroxy addition on the carboxylate carbon of **III** resulted in the formation of **8** by the double intramolecular attacks through path **A**. When methanol was used as a solvent, the ring opening compound **9** was formed as a major product by the intermediate **III** through path **B**. In this reaction, a new chiral center was created in the initially quaternary carbon atom of the aldehyde. The relative stereochemistry of the obtained diastereoisomers **8** has not yet been determined.

Scheme 3

An Efficient Synthesis of α -Amino- δ -valerolactones

In summary, an efficient Ugi five-center-three-component reaction for preparation of the α -amino- δ -valerolactone derivatives **8** has been reported. These new structures broaden the scaffolds that are accessible through the Ugi reaction. This synthesis is characterized as a one pot reaction involving five different functional groups such as a carboxylic acid, an amine, an alcohol, an aldehyde or ketone, and an isocyanide. This intramolecular Ugi condensation reaction will be an excellent tool for a library synthesis of interesting pharmacophores. Further investigations in this area are in progress.

Experimental Section

All reactions were performed under nitrogen atmosphere. Infrared spectra (IR) were recorded on a Perkin Elmer 16F PC FT-IR spectrophotometer and frequencies are given in reciprocal centimeters. NMR spectra were obtained through Varian Gemini 300 MHz and 500 MHz instruments. Chemical Shifts are given in δ scale with TMS as an internal reference in CDCl₃. Electron-impact mass spectra (EIMS) were recorded in the form of m/z (intensity relative to base = 100) on a Hewlett Packard GC-MSD (5890II-5972) system. High-resolution mass spectral analyses were carried out at Korea Basic Science Institute, Seoul, Korea.

General Experimental Procedure. 100 M% of the corresponding aldehyde or ketone 6 was added to 100 mg of L-pentahomoserine 5 in 10 mL of 2,2,2-trifluoroethanol and the reaction mixture was stirred for several hours. The solution was cooled to 0 °C and 110 M% of an isocyanide 7 was added. When the reaction was complete at room temperature controlled by the tlc, the solvent was removed in vacuo. The crude mixture was dissolved in 30 mL of methylene chloride and the organic layer was washed with 10 mL of brine solution, and dried over magnesium sulfate. The residue after solvent evaporation was purified by flash column chromatography on silica gel using 1:1 or 1:2 mixture of hexane and ethyl acetate as an eluent.

N-tert-Butyl-3-methyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-butyramide (8-1). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 3.59 min, minor: 3.66 min); R_f 0.25 (*n*-hexane : ethyl acetate, 2 : 1); FT-IR (neat) 3340 (NHCH), 2990 (aliphatic), 1620 (C(O)), 1545 (C(O)NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.83-1.05 (m, 6H, CH(<u>CH₃</u>)₂), 1.32 (s, 9H, C(<u>CH₃</u>)₃), 1.87-2.10 (m, 1H, CH₃<u>CH</u>CH₃), 2.40 (s, 1H(br), CH<u>NH</u>CH) 2.81 (d, 1H, C(O)<u>CH</u>NH), 3.32 (m, 2H, CH₂<u>CH</u>NH), 6.98 (s, 1H, C(O)<u>NH</u>); HRMS *m*/*z* Calcd for C₁₄H₂₆N₂O₃ (M+): 270.1943; Found: 270.1940.

N-tert-Butyl-3,3-dimethyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-butyramide (8-2). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 3.66 min, minor: 3.71 min); R_f 0.41 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3347 (NHCH), 2975 (aliphatic), 1765 (C(O)), 1580 (C(O)NH) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.96 (m, 9H, C(CH₃)₃), 1.30 (s, 9H, C(CH₃)₃), 1.54-1.62 (m, 1H, OCH₂CH₂), 1.84-1.99 (m, 1H, OCH₂CH₂CH₂), 2.14-2.32 (m, 1H, OCH₂CH₂, 2.70 (s, 1H, CHC(CH₃)₃), 3.25 (m, 1H, CH₂CHNH), 4.37 (m, 2H, OCH₂CH₂); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.26, 21.81, 25.80, 26.67, 26.81, 27.11, 27.16, 28.65, 28.77, 33.65, 33.91, 50.60, 50.76, 55.49, 56.94, 67.58, 68.09, 70.32, 72.59, 171.63, 172.12, 173.57; HRMS *m*/*z* Calcd for C₁₅H₂₈N₂O₃ (M+): 284.2100; Found: 284.2100.

1-(2-Oxo-tetrahydro-pyran-3-ylamino)-cyclohexanecarboxylic acid *tert*-butyl amide (8-3). R_f 0.35 (*n*-hexane : ethyl acetate, 1 : 1); mp 140 °C; FT-IR (KBr) 3365 (NHCH), 2942 (aliphatic), 1663 (C(O)), 1519 (C(O)NH), 1170 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.46-1.68 (m, OCH₂<u>CH</u>₂, CCH₂CH₂<u>CH</u>₂), 1.80-2.02 (m, OCH₂CH₂<u>CH</u>₂, CCH₂<u>CH</u>₂CH₂), 2.15-2.24 (m, O<u>CH</u>₂CH₂, C<u>CH</u>₂CH₂CH₂), 2.49 (br. s, 1H, CH<u>NH</u>CH), 3.35-3.42 (dd, 1H, *J* = 7.4 Hz, *J* = 11.6 Hz, CH₂<u>CH</u>NH), 4.27-4.31 (t, 2H, O<u>CH</u>₂CH₂), 6.87 (s, 1H, C(O)<u>NH</u>); ¹³C NMR (125 MHz, CDCl₃) δ 21.55, 21.66, 25.27, 27.74, 28.56, 30.10, 34.98, 50.32, 51.79, 60.65, 67.89, 174.63, 176.51; HRMS *m*/*z* Calcd for C₁₆H₂₈N₂O₃ (M+): 296.2100; Found: 297.2170.

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2phenyl-acetamide (8-4). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.28 ppm, minor: 3.40 ppm); R_f 0.39 (*n*-hexane : ethyl acetate, 1 : 2); mp 119 °C; FT-IR (KBr) 3309 (NHCH), 3060 (aromatic), 2969 (aliphatic), 1722 (C(O)), 1671 (C(O)NH) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.33 (s, 9H, C(CH₃)₃), 1.58-1.68 (m, 1H, OCH₂CH₂), 1.80-1.97 (m, 1H, OCH₂CH₂CH₂), 2.16-2.31 (m, 1H, OCH2CH2), 3.05 (br. s, 1H, CHNHCH), 3.25-3.50 (dd, 1H, J = 7.5 Hz, J = 11.5 Hz, CH₂CHNH), 4.10-4.28 (m, 2H, OCH2CH2), 4.34 (s, 1H, CHPh), 6.77 (s, 1H, C(O)NH), 7.23-7.36 (m, 5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.29, 21.74, 26.18, 26.34, 28.34, 28.48, 28.61, 28.76, 50.73, 50.84, 54.48, 55.54, 65.67, 66.59, 67.52, 76.83, 127.11, 127.51, 127.93, 128.02, 128,67, 128.70, 139.12, 170.95, 171.52, 173.43, 173.65; HRMS m/z Calcd for C₁₇H₂₄N₂O₃ (M+): 304.1787; Found: 304.1791.

N-tert-Butyl-2-(4-methoxy-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-5). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.25 ppm, minor: 3.37 ppm); R_f 0.44 (ethyl acetate); mp 42 °C; FT-IR (KBr) 3324 (NHCH), 3040 (aromatic), 2966 (aliphatic), 1735 (C(O)), 1662 (C(O)NH), 1178 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.31 (s, 9H, C(CH₃)₃), 1.62-1.70 (m, 1H, OCH₂CH₂), 1.87-2.03 (m, 1H, OCH₂CH₂CH₂), 2.17-2.33 (m, 1H, OCH₂CH₂), 3.23-3.42 (dd, 1H, J = 7.5 Hz, J = 11.5 Hz, CH₂CHNH), 3.79 (s, 3H, OCH₃), 4.15 (s, 1H, CHPh), 4.23-4.33 (m, 2H, OCH2CH2), 6.59 (s, 1H, C(O)NH), 6.84-7.31 (m, 4H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.32, 21.79, 26.20, 26.41, 28.36, 28.43, 28.52, 28.65, 28.75, 50.73, 50.84, 54.33, 55.14, 55.52, 65.04, 66.02, 67.52, 67.84, 114.13, 114.15, 128.30, 128.75, 131.13, 131.29, 159.29, 159.37, 171.27, 171.46, 173.52, 173.75; HRMS *m/z* Calcd for C₁₈H₂₆N₂O₄ (M+): 334.1893; Found: 335.1977

N-tert-Butyl-2-(3-methoxy-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-6). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.28 ppm, minor: 3.39 ppm); $R_f 0.14$ (n-hexane:ethyl acetate, 1 : 1); FT-IR (neat) 3324 (NHCH), 3040 (aromatic), 2966 (aliphatic), 1735 (C(O)), 1662 (C(O)NH), 1145 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.32 (s, 9H, C(CH₃)₃), 1.58-1.74 (m, 1H, OCH2CH2), 1.83-2.04 (m, 1H, OCH2CH2CH2), 2.16-2.36 (m, 1H, OCH2CH2), 2.47 (br. s, 1H, CHNHCH), 3.26-3.43 (dd, 1H, J = 7.5 Hz, J = 11.4 Hz, CH₂CHNH), 3.80 (s, 3H, OCH₃), 4.22-4.33 (m, 2H, OCH₂CH₂), 4.37 (s, 1H, <u>CH</u>Ph), 6.62 (s, 1H, C(O)<u>NH</u>), 6.84-7.29 (m, 5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.35, 21.80, 26.23, 26.49, 28.40, 28.54, 28.68, 28.81, 50.81, 50.92, 50.93, 54.40, 55.13, 55.16, 55.58, 65.71, 66.59, 67.60, 67.84, 112.82, 113.02, 113.65, 113.80, 119.45, 119.96, 129.77, 129.79, 140.61, 140.71, 159.80, 159.88, 170.77, 171.04, 173.40, 173.72, 173.73; HRMS m/z Calcd for C₁₈H₂₆N₂O₄ (M+): 334.1893; Found: 335.1897.

N-tert-Butyl-2-(2-methoxy-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-7). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.31 ppm, minor: 3.45 ppm); $R_f 0.15$ (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3336 (NHCH), 3068 (aromatic), 2966 (aliphatic), 1737 (C(O)), 1673 (C(O)NH), 1143 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.33 (s, 9H, C(CH₃)₃), 1.56-1.75 (m, 1H, OCH2CH2), 1.82-2.06 (m, 1H, OCH2CH2CH2), 2.18-2.41 (m, 1H, OCH2CH2), 3.29-3.47 (m, 1H, CH2CHNH), 3.86 (s, 3H, OCH₃), 4.27-4.32 (m, 2H, OCH₂CH₂), 4.69 (s, 1H, CHPh), 6.89-7.35 (5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ21.16, 21.50, 25.62, 26.38, 28.43, 28.47, 28.56, 28.63, 28.74, 50.59, 50.63, 54.48, 54.86, 55.31, 59.96, 60.70, 67.59, 68.08, 110.87, 111.07, 120.58, 120.97, 127.34, 127.94, 128.68, 128.79, 128.99, 129.29, 156.75, 156.98, 171.06, 171.36, 172.82, 173.50; HRMS *m/z* Calcd for C₁₈H₂₆N₂O₄ (M+): 334.1893; Found: 335.1973.

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2-ptolyl-acetamide (8-8). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.17 min, minor: 6.22 min); $R_f 0.19$ (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3324 (NHCH), 3060 (aromatic), 2967 (aliphatic), 1737 (C(O)), 1664 (C(O)NH), 1143 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.27 (s, 9H, C(CH₃)₃), 1.48-1.69 (m, 1H, OCH₂CH₂), 1.77-1.98 (m, 1H, OCH₂CH₂CH₂), 2.10-2.24 (m, 1H, OCH2CH2), 2.29 (s, 3H, PhCH3), 2.54 (br. s, 1H, CH<u>NH</u>CH), 3.21-3.28 (dd, 1H, J = 7.5 Hz, J = 11.4 Hz, CH2CHNH), 4.13-4.28 (m, 2H, OCH2CH2), 4.30 (s, 1H, <u>CH</u>Ph), 6.71 (s, 1H, C(O)<u>NH</u>), 7.09-7.23 (4H, <u>Ph</u>); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 20.95, 21.29, 21.73, 26.16, 26.38, 28.36, 28.49, 28.62, 50.69, 50.79, 54.39, 55.50, 65.40, 66.29, 67.52, 67.80, 126.98, 127.42, 129.38, 136.09, 136.12, 137.70, 137.73, 171.13, 171.33, 173.43, 173.69; HRMS m/z Calcd for C₁₈H₂₆N₂O₃ (M+): 318.1943; Found: 318.1943.

N-tert-Butyl-2-(4-tert-butyl-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-9). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 7.06 min, minor: 7.03 min); $R_f 0.15$ (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3324 (NHCH), 3060 (aromatic), 2964 (aliphatic), 1739 (C(O)), 1660 (C(O)NH), 1160 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.28 (s, 9H, C(CH₃)₃), 1.38 (s, 9H, PhC(CH₃)₃), 1.44-1.80 (m, 1H. OCH₂<u>CH₂</u>), 1.83-2.04 (m, 1H, OCH₂CH₂<u>CH₂</u>), 2.20-2.40 (m, 1H, OCH₂<u>CH₂</u>), 2.51 (br. s, 1H, CH<u>NH</u>CH), 3.23-3.37 (dd, 1H, *J* = 7.5 Hz, *J* = 11.7 Hz, CH₂<u>CH</u>NH), 4.07-4.30 (m, 2H, O<u>CH₂CH₂</u>), 4.31 (s, 1H, <u>CH</u>Ph), 6.86 (s, 1H, C(O)<u>NH</u>), 7.26-7.36 (4H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.36, 21.90, 26.25, 26.38, 28.42, 28.59, 28.73, 28.81, 31.21, 34.45, 50.7850.82, 54.77, 55.76, 65.46, 66.42, 67.60, 67.96, 125.71, 126.83, 127.16, 136.02, 136.07, 150.85, 150.98, 171.31, 171.48, 173.44, 173.68; HRMS *m*/z Calcd for C₂₁H₃₂N₂O₃ (M+): 360.2413; Found: 361.2463.

N-tert-Butyl-2-(4-fluoro-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-10). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.24 ppm, minor: 3.33 ppm); Rf 0.52 (ethyl acetate); mp 142 °C; FT-IR (KBr) 3322 (NHCH), 3066 (aromatic), 2967 (aliphatic), 1735 (C(O)), 1662 (C(O)NH), 1145 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.24 (s, 9H, C(CH₃)₃), 1.52-1.76 (m, 1H, OCH2CH2), 1.80-2.01 (m, 1H, OCH2CH2CH2), 2.14-2.35 (m, 1H, OCH2CH2), 2.45 (br. s, 1H, CHNHCH), 3.22-3.37 (dd, 1H, J = 7.65 Hz, J = 11.6 Hz, CH₂CHNH), 4.15-4.29 (m, 2H, OCH2CH2), 4.32 (s, 1H, CHPh), 6.76 (s, 1H, C(O)<u>NH</u>), 6.95-7.36 (5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.43, 21.90, 26.36, 26.49, 28.59, 28.64, 28.73, 28.89, 50.92, 51.05, 54.53, 55.65, 65.07, 66.08, 67.61, 68.00, 115.61, 115.66, 115.78, 115.83, 128.92, 128.98, 129.29, 129.35, 135.01, 135.03, 161.57, 163.52, 170.79, 173.67; HRMS m/z Calcd for C17H23FN2O3 (M⁺): 322.1693; Found: 322.1701.

N-tert-Butyl-2-(3-fluoro-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-11). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 5.62 min, minor: 5.65 min); Rf 0.40 (n-hexane : ethyl acetate, 1:1); mp 101 °C; FT-IR (KBr) 3301 (NHCH), 3079 (aromatic), 2971 (aliphatic), 1741 (C(O)), 1643 (C(O)NH), 1149 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 9H, C(CH₃)₃), 1.54-1.71 (m, 1H. OCH₂CH₂), 1.82-2.01 (m, 1H, OCH₂CH₂CH₂), 2.12-2.38 (m, 1H, OCH₂CH₂), 2.46 (s, 1H(br), CH<u>NH</u>CH), 3.24-3.30 (dd, 1H, *J* = 7.5 Hz, *J* = 11.4 Hz, CH2CHNH), 4.17-4.31 (m, 2H, OCH2CH2), 4.36 (s, 1H, <u>CH</u>Ph), 6.72 (s, 1H, C(O)<u>NH</u>), 6.92-7.38 (4H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.33, 21.77, 26.24, 26.36, 28.48, 28.62, 28.78, 50.88, 51.00, 54.46, 55.47, 65.24, 66.11, 67.57, 67.91, 114.10, 114.18, 114.45, 114.84, 114.95, 114.97, 115.12, 115.14, 122.95, 123.38, 130.23, 130.30, 141.74, 161.89, 163.85, 170.32, 170.51, 173.42, 173.62; HRMS m/z Calcd for C₁₇H₂₃FN₂O₃ (M+): 322.1693; Found: 322.1691.

N-tert-Butyl-2-(4-chloro-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-12). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 11.77 min, minor: 11.92 min); R_f 0.42 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3324 (NHCH), 3068 (aromatic), 2967 (aliphatic), 1735 (C(O)), 1664 (C(O)NH), 1145 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.32 (s, 9H, C(CH₃)₃), 1.54-1.69 (m, 1H, OCH₂CH₂), 1.81-2.02 (m, 1H, OCH₂-CH₂CH₂), 2.10-2.15 (m, 1H, OCH₂CH₂), 3.24-3.30 (dd, 1H, J = 7.4 Hz, J = 11.3 Hz, CH₂CHNH), 4.09-4.33 (m, 2H, OCH₂CH₂), 4.36 (s, 1H, CHPh), 6.67 (s, 1H, C(O)NH), 7.27-7.40 (5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 20.90, 21.35, 21.80, 26.26, 26.38, 28.36, 28.51, 28.64, 28.78, 28.83, 50.90, 51.03, 54.47, 55.46, 65.02, 65.90, 67.56, 67.95, 128.59, 128.87, 128.92, 128.95, 129.08, 129.48, 133.85, 133.92, 137.62, 137.69, 170.59, 170.74, 173.48, 173.63; HRMS *m*/*z* Calcd for C₁₇H₂₃ClN₂O=(M+): 338.1397; Found: 339.1488.

N-tert-Butyl-2-(3-chloro-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-13). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.54 min, minor: 6.58 min); Rf 0.18 (n-hexane : ethyl acetate, 1:1); mp 126 °C; FT-IR (KBr) 3324 (NHCH), 3066 (aromatic), 2967 (aliphatic), 1735 (C(O)), 1662 (C(O)NH), 1145 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 9H, C(CH₃)₃), 1.56-1.74 (m, 1H, OCH₂CH₂), 1.82-2.03 (m, 1H, OCH₂CH₂-<u>CH</u>₂), 2.13-2.35 (m, 1H, OCH₂CH₂), 2.44 (br. s, 1H, CHNHCH), 3.20-3.43 (m, 1H, CH2CHNH), 4.15-4.31 (m, 2H, OCH₂CH₂), 4.33 (s, 1H, CHPh), 6.74 (s, 1H, C(O)NH), 7.20-7.41 (5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.36, 21.81, 26.26, 26.41, 26.43, 28.53, 28.67, 51.08, 54.54, 55.47, 65.26, 66.07, 67.61, 67.96, 125.42, 125.84, 127.44, 127.66, 128.22, 128.31, 130.38, 141.25, 170.31, 170.49, 173.41, 173.60; HRMS m/z Calcd for C₁₇H₂₃ClN₂O₃ (M+): 338.1397; Found: 338.1399.

N-tert-Butyl-2-(2-chloro-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-14). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.29 ppm, minor: 3.40 ppm); Rf 0.27 (n-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3324 (NHCH), 3066 (aromatic), 2967 (aliphatic), 1735 (C(O)), 1670 (C(O)NH), 1162 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.33 (s, 9H, C(CH₃)₃), 1.52-1.74 (m, 1H, OCH2CH2), 1.82-2.02 (m, 1H, OCH2CH2CH2), 2.18-2.39 (m, 1H, OCH₂CH₂), 3.26-3.43 (dd, 1H, J = 7.5 Hz, J = 11.0 Hz, CH₂CHNH), 4.18-4.30 (m, 2H, OCH₂CH₂), 4.79 (s, 1H, CHPh), 6.95 (s, 1H, C(O)NH), 7.18-7.41 (5H, aromatic); 13 C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.19, 21.58, 25.80, 26.60, 28.44, 28.52, 28.60, 28.78, 51.15, 54.82, 55.16, 62.07, 62.43, 67.79, 68.16, 127.28, 127.33, 129.04, 129.15, 129.18, 129.29, 129.80, 129.96, 133.64, 137.16, 169.99, 170.27, 172.59, 173.46; HRMS m/z Calcd for C₁₇H₂₃ClN₂O₃ (M+): 338.1397; Found: 339.1477.

2-(3-Bromo-phenyl)*-N-tert***-butyl-2-(2-oxo-tetrahydropyran-3-ylamino)**-acetamide (8-15). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.95 min, minor: 6.99 min); R_f 0.22 (*n*-hexane : ethyl acetate, 1 : 1); mp 116 °C; FT-IR (KBr) 3372 (NHCH), 3064 (aromatic), 2969 (aliphatic), 1714 (C(O)), 1671 (C(O)NH), 1072 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.32 (s, 9H, C(CH₃)₃), 1.58-1.75 (m, 1H. OCH₂<u>CH₂</u>), 1.82-2.04 (m, 1H, OCH₂-CH₂<u>CH₂</u>), 2.16-2.34 (m, 1H, OCH₂<u>CH₂</u>), 3.24-3.30 (dd, 1H, *J* = 7.7 Hz, *J* = 11.6 Hz, CH₂<u>CH</u>NH), 4.18-4.30 (m, 2H, O<u>CH</u>₂CH₂), 4.33 (s, 1H, <u>CH</u>Ph), 6.70 (s, 1H, C(O)<u>NH</u>), 7.14-7.54 (4H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.38, 21.83, 26.28, 26.45, 28.56, 28.69, 28.86, 30.85, 50.99, 51.11, 54.55, 55.50, 65.27, 66.067, 67.622, 67.98, 122.83, 125.90, 126.32, 130.35, 130.59, 131.19, 131.28, 141.33, 141.51, 170.27, 170.46, 173.40, 173.60; HRMS *m*/*z* Calcd for C₁₇H₂₃BrN₂O₃ (M+): 382.1092; Found: 385.0938.

2-(2-Bromo-phenyl)-N-tert-butyl-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-16). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.75 min, minor: 6.71 min); Rf 0.23 (n-hexane : ethyl acetate, 1:1); FT-IR (neat) 3307 (NHCH), 3064 (aromatic), 2967 (aliphatic), 1739 (C(O)), 1668 (C(O)NH), 1145 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.32 (s, 9H, C(CH₃)₃), 1.48-1.78 (m, 1H. OCH2CH2), 1.80-2.02 (m, 1H, OCH2CH2-<u>CH</u>₂), 2.04-2.41 (m, 1H, OCH₂<u>CH</u>₂), 3.24-3.35 (dd, 1H, J =7.5 Hz, J = 11.4 Hz, CH₂CHNH), 4.02-4.38 (m, 2H, OCH CH₂), 4.81 (s, 1H, CHPh), 6.87 (s, 1H, C(O)NH), 7.06-7.61 (4H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.23, 21.60, 25.85, 26.73, 28.55, 28.63, 28.83, 51.21, 54.75, 55.16, 64.01, 64.61, 67.78, 68.18, 124.18, 127.99, 129.46, 133.10, 133.23, 138.88, 138.89, 169.87, 170.18, 173.52, 173.53; HRMS: m/z Calcd for C17H23BrN2O3 (M+): 382.1092; Found: 385.0929.

N-tert-Butyl-2-(4-cyano-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-17). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.26 ppm, minor: 3.37 ppm); Rf 0.51 (ethyl acetate); mp 155 °C; FT-IR (KBr) 3336 (NHCH), 3040 (aromatic), 2969 (aliphatic), 2229 (CN), 1735 (C(O)), 1664 (C(O)NH), 1145 (C(O)) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.28 (s, 9H, C(CH₃)₃), 1.63-1.72 (m, 1H, OCH₂CH₂), 1.86-2.01 (m, 1H, OCH₂CH₂CH₂), 2.18-2.32 (m, 1H, OCH₂CH₂), 2.47 (br. s, 1H, CHNHCH), 3.24-3.40 (dd, 1H, J = 7.3 Hz, J = 11.3 Hz, CH_2CHNH), 4.20-4.33 (m, 2H, OCH2CH2), 4.42 (s, 1H, CHPh), 6.87 (s, 1H, C(O)<u>NH</u>), 7.49-7.60 (5H, aromatic); ¹³C NMR (125 MHz, CDCl₃, Diastereomer mixtures) δ 21.33, 21.75, 26.30, 28.46, 28.59, 51.17, 54.65, 55.41, 65.35, 67.62, 68.01, 11.88, 118.41, 128.05, 128.33, 132.46, 144.59, 169.75, 173.52; HRMS m/z Calcd for C₁₈H₂₃N₃O₃ (M+): 329.1739; Found: 329.1741.

N-tert-Butyl-2-(3-cyano-phenyl)-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-18). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.27 ppm, minor: 3.37 ppm); R_f 0.48 (ethyl acetate); mp 40 °C; FT-IR (KBr) 3324 (NHCH), 3040 (aromatic), 2969 (aliphatic), 2229 (CN), 1735 (C(O)), 1664 (C(O)NH), 1149 (C(O)) cm⁻¹; ¹H NMR (300MHz, CDCl₃) δ 1.31 (s, 9H, C(CH₃)₃), 1.62-1.75 (m, 1H, OCH₂<u>CH₂</u>), 1.86-2.01 (m, 1H, OCH₂CH₂<u>CH₂</u>), 2.18-2.34 (m, 1H, OCH₂<u>CH₂</u>), 3.25-3.40 (dd, 1H, *J* = 7.4 Hz, *J* = 11.3 Hz, CH₂<u>CH</u>NH), 4.20-4.35 (m, 2H, O<u>CH₂</u>CH₂), 4.39 (s, 1H, <u>CH</u>Ph), 6.88 (s, 1H, C(O)<u>NH</u>), 7.42-7.69 (5H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.31, 21.73, 26.24, 28.45, 28.58, 51.16, 54.62, 55.32, 64.89, 65.64, 67.59, 68.01, 112.69, 118.44, 129.51, 130.85, 131.03, 131.60, 131.63, 131.80, 132.13, 140.86, 169.92, 169.95, 173.48, 173.56; HRMS *m*/*z* Calcd for C₁₈H₂₃N₃O₃ (M+): 329.1739; Found: 329.1730.

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2-(4-trifluoromethyl-phenyl)-acetamide (8-19). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 5.38 min, minor: 5.43 min); Rf 0.18 (n-hexane : ethyl acetate, 1:1); FT-IR (neat) 3322 (NHCH), 2969 (aliphatic), 1774 (C(O)), 1662 (C(O)NH), 1124 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃); δ 1.33 (s, 9H, C(CH₃)₃), 1.53-1.76 (m, 1H, OCH2CH2), 1.84-2.15 (m, 1H, OCH2CH2-<u>CH</u>₂), 2.17-2.38 (m, 1H, OCH₂<u>CH</u>₂), 3.25-3.31 (dd, 1H, J =7.5 Hz, J = 11.4 Hz, CH₂CHNH), 4.04-4.34 (m, 2H, OCH₂-CH₂), 4.43 (s, 1H, CHPh), 6.72 (s, 1H, C(O)NH), 7.49-7.62 (4H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.41, 21.88, 26.36, 26.46, 28.47, 28.57, 28.70, 51.07, 51.20, 54.69, 55.59, 65.45, 66.23, 67.67, 68.05, 125.78, 125.79, 127.68, 127.99, 143.01, 143.22, 170.20, 170.35, 173.43, 173.61; HRMS m/z Calcd for C18H23F3N2O3 (M+): 372.1661; Found: 372.1670.

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2-(2-trifluoromethyl-phenyl)-acetamide (8-20). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 5.22 min, minor: 5.17 min); Rf 0.31 (nhexane : ethyl acetate, 1:1); FT-IR (neat) 3307 (NHCH), 2967 (aliphatic), 1737 (C(O)), 16794 (C(O)NH), 1157 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.20 (s, 9H, C(CH₃)₃), 1.49-1.63 (m, 1H. OCH2CH2), 1.78-2.01 (m, 1H, OCH2CH2- CH_2), 2.13-2.29 (m, 1H, OCH₂CH₂), 3.23-3.29 (dd, 1H, J =7.5 Hz, J = 11.4 Hz, CH₂CHNH), 4.15-4.29 (m, 2H, OCH₂-CH₂), 4.72 (s, 1H, CHPh), 6.56 (s, 1H, C(O)NH), 7.26-7.69 (4H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.23, 21.66, 25.90, 26.52, 28.39, 28.51, 28.62, 51.14, 51.29, 54.76, 55.12, 60.33, 60.37, 60.74, 67.69, 68.28, 123.24, 125.42, 125.73, 125.78, 125.82, 125.87, 128.05, 128.8, 128.27, 129.17, 132.60, 132.79, 138.73, 169.81, 170.10, 172.67, 173.80; HRMS m/z Calcd for C₁₈H₂₃F₃N₂O₃ (M+): 372.1661; Found: 372.1733.

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2pyridin-4-yl-acetamide (8-21). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 10.34 min, minor: 10.44 min); R_f 0.03 (*n*-hexane : ethyl acetate, 1:1); FT-IR (neat) 3363 (NHCH), 3062 (aromatic), 2967 (aliphatic), 1710 (C(O)), 1673 (C(O)NH), 1072 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 9H, C(CH₃)₃), 1.62-1.75 (m, 1H. OCH₂CH₂), 1.84-2.06 (m, 1H, OCH₂CH₂-<u>CH</u>₂), 2.17-2.34 (m, 1H, OCH₂CH₂), 3.24-3.30 (dd, 1H, J =7.5 Hz, J = 11.4 Hz, CH₂CHNH), 4.02-4.32 (m, 2H, OCH₂-CH₂), 4.35 (s, 1H, <u>CH</u>Ph), 6.76 (s, 1H, C(O)<u>NH</u>), 7.25-8.58 (4H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.30, 21.73, 26.28, 28.45, 28.58, 51.03, 51.15, 54.62, 55.39, 64.79, 64.84, 65.47, 67.62, 67.98, 122.13, 122.46, 147.68, 148.05, 150.01, 150.04, 150.09, 169.52, 169.64, 173.48; HRMS m/z Calcd for C₁₆H₂₃N₃O₃ (M+): 305.1739; Found: 305.1738.

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2pyridin-3-yl-acetamide (8-22). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.28 ppm, minor: 3.37 ppm); R_f 0.06 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3351 (NHCH), 3052 (aromatic), 2977 (aliphatic), 1745 (C(O)), 1679 (C(O)NH), 1155 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 9H, C(CH₃)₃), 1.52-1.74 (m, 1H. OCH₂<u>CH₂</u>), 1.82-2.02 (m, 1H, OCH₂CH₂<u>CH₂</u>), 2.15-2.32 (m, 1H, OCH₂<u>CH₂</u>), 2.42 (r. s, 1H, CH<u>NH</u>CH), 3.25-3.40 (dd, 1H, J = 7.4 Hz, J = 11.6 Hz, CH₂<u>CH</u>NH), 4.00-4.30 (m, 2H, O<u>CH₂CH₂</u>), 4.37 (s, 1H, <u>CH</u>Ph), 6.89 (s, 1H, C(O)<u>NH</u>), 7.24-8.59 (4H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.26, 21.70, 26.20, 28.43, 28.56, 50.94, 51.04, 54.58, 55.35, 63.30, 64.14, 67.53, 67.93, 123.59, 134.77, 134.95, 135.137, 148.67, 148.95, 149.18, 149.25, 170.08, 173.49; HRMS m/z Calcd for C₁₆H₂₃N₃O₃ (M+): 305.1739; Found: 305.1731

N-tert-Butyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-2pyridin-2-yl-acetamide (8-23). Diastereomeric ratio was determined by ¹H NMR analysis (major: 7.36 ppm, minor: 7.42 ppm); Rf 0.05 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3315 (NHCH), 3062 (aromatic), 2967 (aliphatic), 1743 (C(O)), 1648 (C(O)NH), 1164 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 9H, C(CH₃)₃), 1.67-1.82 (m, 1H, OCH2CH2), 1.88-2.06 (m, 1H, OCH2CH2CH2), 2.22-2.39 (m, 1H, OCH₂CH₂), 3.40-3.52 (dd, 1H, J = 7.5 Hz, J = 11.5 Hz, CH2CHNH), 4.24-4.34 (m, 2H, OCH2CH2), 4.39 (s, 1H, CHPh), 7.36-7.42 (s, 1H, C(O)NH), 7.17-8.54 (4H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.37, 21.71, 26.25, 26.42, 28.52, 28.59, 50.73, 50.81, 55.47, 55.73, 65.77, 65.79, 66.36, 67.69, 67.88, 122.57, 122.61, 122.62, 122.73, 136.54, 136.62, 148.52, 148.62, 156.77, 157.64, 157.65, 170.13, 170.73, 173.14, 173.32.

N-tert-Butyl-2-naphthalen-1-yl-2-(2-oxo-tetrahydropyran-3-ylamino)-acetamide (8-24). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 7.91 min, minor: 7.83 min); Rf 0.18 (n-hexane : ethyl acetate, 1:1); FT-IR (neat) 3324 (NHCH), 3066 (aromatic), 2966 (aliphatic), 1735 (C(O)), 1670 (C(O)NH), 1144 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.26 (s, 9H, C(CH₃)₃), 1.50-1.04 (m, 1H, OCH₂CH₂), 2.08-2.22 (m, 1H, OCH₂CH₂CH₂), 2.32-2.46 (m, 1H, OCH₂CH₂), 2.58 (br. s, 1H, CHNHCH), 3.25-3.31 (dd, 1H, J = 7.5 Hz, J = 11.1 Hz, CH_2CHNH), 4.08-4.33 (m, 2H, OCH₂CH₂), 4.98 (s, 1H, CHPh), 6.34 (s, 1H, C(O)<u>NH</u>), 7.42-8.28 (5H, aromatic); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.40, 21.62, 26.38, 26.84, 28.49, 28.70, 28.88, 30.89, 51.11, 51.14, 54.182, 55.759, 62.76, 67.70, 67.87, 123.65, 124.13, 124.99, 125.23, 125.32, 125.88, 125.93, 126.37, 126.68, 128.76, 128.82, 128.84, 129.00, 131.47, 134.19, 134.25, 134.98, 135.45, 171.05, 171.57, 173.22, 173.99; HRMS m/z Calcd for C₂₁H₂₆N₂O₃ (M+): 354.1943; Found: 354.1943.

N-tert-Butyl-2-furan-2-yl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-acetamide (8-25). Diastereomeric ratio was determined by ¹H NMR analysis (major: 3.31 ppm, minor: 3.40 ppm); R_f 0.15 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3324 (NHCH), 2967 (aliphatic), 1737 (C(O)), 1668 (C(O)NH), 1149 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.32 (s, 9H, C(CH₃)₃), 1.52-1.74 (m, 1H, OCH₂CH₂), 1.82-2.02 (m, 1H, OCH₂CH₂CH₂), 2.12-2.32 (m, 1H, OCH₂CH₂), 2.58 (br.

s, 1H, CH<u>NH</u>CH), 3.29-3.43 (dd, 1H, J = 7.5 Hz, J = 11.1 Hz, CH₂C<u>H</u>NH), 4.20-4.31 (m, 2H, O<u>CH</u>₂CH₂), 4.51 (s, 1H, <u>CH</u>Ph), 6.73 (s, 1H, C(O)<u>NH</u>), 6.27-6.32, 7.34-7.36 (m, 3H); ¹³C NMR (125 Hz, CDCl₃, Diastereomer mixtures) δ 21.57, 25.95, 26.10, 28.36, 28.40, 28.44, 28.50, 28.56, 28.71, 50.92, 51.00, 54.18, 55.09, 59.39, 59.78, 67.74, 67.81, 107.88, 108.50, 110.26, 110.37, 142.33, 142.39, 151.48, 168.54, 168.87, 172.99, 173.43; HRMS *m*/*z* Calcd for C₁₅H₂₂N₂O₄ (M+): 294.1580; Found: 295.1697.

N-Benzyl-3-methyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)butyramide (8-26). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.44 min, minor: 6.55 min); R_f 0.08 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3322 (NHCH), 3060 (aromatic), 2961 (aliphatic), 1730 (C(O)), 1650 (C(O)NH), 1220 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.83-1.05 (m, 6H, CH(<u>CH₃)₂</u>), 1.25-1.37 (m, 1H, <u>CH</u>(CH₃)₂), 1.43-2.14 (m, 3H, OCH₂CH₂<u>CH₂</u>, CCH₂<u>CH₂CH₂</u>), 3.02-3.05 (t, 1H, <u>CH</u>CH(CH₃)₂), 3.20-3.33 (dd, 1H, *J* = 7.5 Hz, *J* = 11.5 Hz, CH₂<u>CH</u>NH), 4.21-4.26 (q, 2H, PhCH₂NH), 4.34-4.53 (m, 2H, CCH₂<u>CH₂</u>), 7.19-7.36 (m, aromatic), 7.65 (s, 1H, C(O)<u>NH</u>); HRMS *m*/z Calcd for C₁₇H₂₄N₂O₃ (M+): 304.1787; Found: 304.2787.

3-Methyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-butyrylamino]-acetic acid ethyl ester (8-27). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 4.54 min, minor: 4.75 min); R_f 0.06 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (neat) 3336 (NHCH), 2963 (aliphatic), 1737 (C(O)), 1679 (C(O)NH), 1203 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.87-1.06 (m, 6H, CH(<u>CH</u>₃)₂), 1.22-1.27 (m, 3H, OCH₂CH₃), 1.52-2.36 (m, 4H, OCH₂CH₂<u>CH₂, CCH₂CH₂-CH₂, CH<u>CH</u>(CH₃)₂), 3.05-3.06 (d, 1H, C(O)<u>CH</u>NH), 3.31-4.47 (m, 8H, O<u>CH₂CH₂CH₂, O<u>CH₂CH₃, CHNH</u>CH, CH₂-<u>CH</u>NH), 7.76 (s, 1H, C(O)<u>NH</u>); HRMS *m*/*z* Calcd for C₁₄H₂₄N₂O5 (M+): 300.1685; Found: 300.1682.</u></u>

N-Benzyl-3,3-dimethyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)-butyramide (8-28). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.46 min, minor: 6.53 min); R_f 0.32 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (KBr) 3367 (NHCH), 2973 (aliphatic), 1733 (C(O)), 1656 (C(O)NH), 1151 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.02 (s, 9H, C(<u>CH₃)₃</u>), 1.36-1.58 (m, 1H, OCH₂<u>CH₂</u>), 1.68-2.07 (m, 2H, OCH₂CH₂<u>CH₂</u>), 2.14-2.36 (m, 1H, OCH₂<u>CH₂</u>), 2.94 (s, 1H, <u>CH</u>C(CH₃)₃), 3.08-3.42 (dd, 1H, *J* = 7.5 Hz, *J* = 11.5 Hz, CH₂<u>CH</u>NH, 4.07-4.55 (m, 2H, O<u>CH₂CH₂</u>), 7.17-7.34 (m, aromatic); HRMS *m*/*z* Calcd for C₁₈H₂₆N₂O₃ (M+): 318.1943; Found: 318.1946.

3,3-Dimethyl-2-(2-oxo-tetrahydro-pyran-3-ylamino)butyrylamino]-acetic acid ethyl ester (8-29). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 5.45 min, minor: 3.37 min); R_f 0.12 (*n*-hexane : ethyl acetate, 1 : 1); FT-IR (KBr) 3297 (NHCH), 2955 (aliphatic), 1729 (C(O)), 1643 (C(O)NH), 1192 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.03 (s, 9H, C(<u>CH₃)₃</u>), 1.22-1.29 (t, 3H, OCH₂<u>CH₃</u>), 1.49-1.60 (m, 1H, OCH₂CH₂<u>CH₂</u>), 1.85-2.04 (m, 2H, OCH₂<u>CH₂</u>), 2.33-2.42 (m, 1H, OCH₂-CH₂<u>CH₂</u>), 2.97 (s, 1H, C(O)<u>CH</u>NH), 3.47-3.54 (dd, 1H, *J* = 7.5 Hz, *J* = 11.5 Hz, CH₂<u>CH</u>NH) 3.95-4.25 (m, 2H, O<u>CH₂-</u> CH₃), 4.27-4.32 (m, 2H, O<u>CH</u>₂CH₂), 7.76 (s, 1H, C(O)<u>NH</u>); HRMS *m*/*z* Calcd for C₁₅H₂₆N₂O₅ (M+): 314.1842; Found: 314.1845.

2-(4-Methoxy-phenyl)-2-(2-oxo-tetrahydro-pyran-3-yl-amino)-acetylamino]-acetic acid ethyl ester (8-30). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.77 min, minor: 6.88 min); R_f 0.38 (ethyl acetate); FT-IR (KBr) 3336 (NHCH), 2960 (aliphatic), 1738 (C(O)), 1679 (C(O)NH), 1249 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.22-1.28 (m, 3H, OCH₂CH₃), 1.56-1.72 (m, 1H, OCH₂CH₂CH₂), 1.83-2.02 (m, 2H, OCH₂CH₂), 2.15-2.44 (m, 1H, OCH₂CH₂CH₂), 3.36-3.46 (dd, 1H, *J* = 7.5 Hz, *J* = 11.5 Hz, CH₂CH₁NH), 3.78 (s, 3H, PhO<u>CH₃</u>), 3.87-4.00 (m, 2H, Ph<u>CH₂NH), 4.09-4.31 (m, 2H, OCH₂CH₂), 4.52 (s, 1H, C(O)<u>CH</u>NH), 6.83-6.91, 7.26-7.36 (m, aromatic) 7.75 (s, 1H, C(O)<u>NH</u>); HRMS *m*/*z* Calcd for C₁₈H₂₄N₂O₆ (M+): 364.1634; Found: 364.1633.</u>

N-Benzyl-2-(4-fluoro-phenyl)-2-(2-oxo-tetrahydro-pyran-3-ylamino)-acetamide (8-31). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 7.96 min, minor: 7.84 min); R_f 0.44 (ethyl acetate); FT-IR (KBr) 3353 (NHCH), 3058 (aromatic), 2959 (aliphatic), 1735 (C(O)), 1681 (C(O)NH), 1159 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.50-1.69 (m, 1H, OCH₂CH₂CH₂), 1.76-2.00 (m, 2H, OCH₂CH₂) 2.11-2.22 (m, 1H, OCH₂CH₂CH₂), 2.49 (s, 1H, CH<u>NH</u>CH), 3.22-3.28 (dd, 1H, *J* = 7.5 Hz, *J* = 11.5 Hz, CH₂CHNH) 4.13-4.28 (m, 2H, Ph<u>CH₂NH), 4.40-</u> 4.49 (m, 2H, O<u>CH₂CH₂), 4.57 (s, 1H, C(O)CHNH), 6.84-</u> 7.39 (m, aromatic), 7.49 (s, 1H, C(O)<u>NH</u>); HRMS *m/z* Calcd for C₂₀H₂₁FN₂O₃ (M+): 356.1536; Found: 356.1534.

2-(4-Fluoro-phenyl)-2-(2-oxo-tetrahydro-pyran-3-yl-amino)-acetylamino]-acetic acid ethyl ester (8-32). Diastereomeric ratio was determined by GC/Mass analysis (Retention time; major: 6.85 min, minor: 6.74 min); R_f 0.40 (ethyl acetate); FT-IR (KBr) 3325 (NHCH), 2981 (aliphatic), 1740 (C(O)), 1678 (C(O)NH), 1219 (C(O)) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.22-1.31 (m, 3H, OCH₂<u>CH₃), 1.58-1.72 (m, 1H, OCH₂CH₂CH₂), 1.84-2.03 (m, 2H, OCH₂<u>CH₂), 2.23-2.32 (m, 1H, OCH₂CH₂CH₂), 2.45 (s, 1H, CH<u>NH</u>CH) 3.38-3.44 (dd, 1H, *J* = 7.5 Hz, *J* = 11.5 Hz, CH2<u>CH</u>NH), 3.93-4.10 (m, 2H, Ph<u>CH₂NH), 4.17-4.33 (m, 2H, OCH₂-CH₂), 4.56 (s, 1H, C(O)<u>CH</u>NH), 6.99-7.10, 7.40-7.45 (m, aromatic) 7.77 (s, 1H, C(O)<u>NH</u>); HRMS *m*/z Calcd for C₁₇H₂₁FN₂O₅ (M+): 352.1435; Found: 352.1432.</u></u></u>

Acknowledgment. This work was supported by the Ministry of Science and Technology and the Ministry of Health and Welfare.

References

- 1. Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168.
- 2. Ugi, I. J. Prakt. Chem. 1997, 339, 499 and references therein.
- Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123.
- 4. Ugi, I. Proc. Estonian Acad. Sci. Chem. 1998, 47, 107.
- 5. Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. *Chem. Eur. J.* **2000**, *6*, 3321.

- 6. Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett. 2000, 2, 709.
- 7. Ugi, I. Angew. Chem. Int. Ed. Engl. 1982, 21, 810.
- 8. Ugi, I.; Dömling, A.; Horl, W. Endeavor 1994, 18, 155.
- Zhang, J.; Jacobson, A.; Rusche, J. R.; Herlihy, W. J. Org. Chem. 1999, 64, 1074.
- 10. Pitlik, J.; Townsend, C. A. Bioorg. Med. Chem. Lett. 1997, 7, 3129.
- 11. Mjalli, A. M. M.; Short, K. M. Tetrahedron Lett. 1997, 38, 359.
- 12. Harriman, G. C. B. Tetrahedron Lett. 1997, 38, 5591.
- 13. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett. 1998, 39, 2725.
- Short, K. M.; Ching, B. W.; Mjalli, A. M. M. Tetrahedron 1997, 53, 6653.
- Short, K. M.; Ching, B. W.; Mjalli, A. M. M. *Tetrahedron Lett.* 1996, 37, 7489.
- 16. Bienayme, H.; Bouzid, K. Tetrahderon Lett. 1998, 39, 2735.
- Zhang, C.; Moran, E. J.; Woiwode, T. F.; Short, K. M.; Mjalli, A. M. M. *Tetrahedron Lett.* **1996**, *37*, 751.
- Strocker, A. M.; Keating, T. A.; Tempest, P. A.; Armstrong, R. W. Tetrahedron Lett. 1996, 37, 1149.
- Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574.
- Mjalli, A. M. M.; Sarshar, S.; Baiga, T. J. *Tetrahedron Lett.* 1996, 37, 2943.
- 21. Hulme, C.; Morrissette, M. M.; Volz, F. A.; Burns, C. J. *Tetrahedron Lett.* **1998**, *39*, 1113.

- Ugi, I.; Hörl, W.; Hanusch-Kompa, C.; Schmid, T.; Herdtweck, E. *Heterocycles* 1998, 47, 965.
- Hulme, C.; Peng, J.; Louridas, B.; Menard, P.; Krolikowski, P.; Kumar, N. V. *Tetrahedron Lett.* **1998**, *39*, 8047.
- 24. Rossen, K.; Sager, J.; DiMichele, L. M. Tetrahedron Lett. 1997, 38, 3183.
- 25. Zychlinski, A. V.; Ugi, I. Heterocycles 1998, 49, 29.
- 26. Keating, T. A.; Armstrong, R. W. J. Org. Chem. 1996, 61, 8935.
- Hulme, C.; Peng, J.; Tang, S.-Y.; Burns, C. J.; Morize, I.; Labaudiniere, R. J. Org. Chem. 1998, 63, 8021.
- Kim, Y. B.; Choi, E. H.; Keum, G.; Kang, S. B.; Lee, D. H.; Koh, H. Y.; Kim, Y. Org. Lett. 2001, 3, 4149.
- 29. Park, S. J.; Keum, G.; Kang, S. B.; Koh, H. Y.; Lee, D. H.; Kim, Y. *Tetrahedron Lett.* **1998**, *39*, 7109.
- Ko, D.; Kim, D. J.; Lyn, C. S.; Min, I. K.; Moon, H. Tetrahedron Lett. 1998, 39, 297.
- Telford, G.; Wheeler, D.; Williams, P.; Tomkins, P. T.; Appleby, P.; Sewell, H.; Stewart, G. S. A. B.; Bycroft, B. W.; Pritchard, D. I. *Infection and Immunity* **1998**, *66*, 36.
- Barlos, K.; Mamos, P.; Papaioannou, D.; Patrianakou, S. J. Chem. Soc., Chem. Commun. 1987, 1583.
- 33. Goodman, M.; Felix, A. M. Biochemistry 1964, 3, 1529.
- Barlos, K.; Papaioannou, D.; Theodoropoulos, D. J. Org. Chem. 1982, 47, 1324.