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The entropies and chemical potentials of hard-sphere solutes solvated in hard-sphere solids were calculated by
Monte Carlo method using the radial free-space distribution function. This method is based on calculating the
entropy by comparing the free volume of a molecule with that of an ideal gas, and is applicable even when the
size of solute is very large and the solvent is a solid. When the diameter of hard-sphere solute is small the solute
molecule behaves as like as a fluid in solid structures, but when the diameter of solute becomes large, a fluid-
to-solid phase transition takes place. The fluid-to-solid phase transition occurs at the region of the smaller size
of solute with the more increase of solvent density. The least square fit values of analytical form of the radial
free-space distribution functions of solute molecules are presented for future uses.

Introduction

The chemical potential is one of the most important ther-
modynamic properties since it is a criterion to determine the
direction of spontaneous processes. The entropy is involved
in the chemical potential, however the theoretical estimation
for entropy is not simply made by ensemble average.1 The
insertion method,2-4 i.e., calculating the probability of insert-
ing a particle into an equilibrated ensemble, has been the
most practical one that has been used in Monte Carlo (MC)
simulations. The chemical potentials of hard-sphere solutes
solvated in hard-sphere fluid solvents have been calculated5,6

by the insertion method. However the insertion method has a
limit when the density of a system is high and the size of sol-
ute is very large. This limit is reached when the chemical
potentials are greater than about 14 kT because in this case
the insertion probability is less than 10−6, i.e., the lowest
probability detected when the usual number of simulation
trial steps are of the order of millions. In the previous work,7

the different method employing the radial free-space distri-
bution function (RFSDF) has been used. The method using
RFSDF overcomes the difficulties8 that might arise when the
density is high and the size of solute is very large. This
method has been provided good results for estimating the
free energies of fluid and solid systems with hard-sphere and
Lennard-Jones potentials and for calculating the solvation
free energies of different sizes of hard-sphere solutes in
hard-sphere fluids.7-9 In this work, the method is applied to
the system of hard-sphere solutes with different sizes sol-
vated in hard-sphere solids.

Method

In order to calculate the entropies and chemical potentials
employing the RFSDF of hard-sphere solutes solvated in
hard-sphere solids, the same method as in ref. [7] has been
used except that the solvent structures are, in this paper, sol-
ids instead of fluids. However the method is briefly

explained again. 
The RFSDF, ζ(r) , is obtained in MC procedure by the fo

lowing ratio:

(1)

ζ(r) starts from unity at r = 0 and decreases exponentially 
large r. The RFSDF is the distribution function of particle
cavity (including the cavity formed by removing the part
cle) relations. In the case of hard-sphere fluid and solid, 
particle and cavity are interchangeable. The excess entr
over an ideal gas is calculated by comparing the free v
umes as follows,

(2)

in which R is the gas constant, Vf is the molecular free vol-
ume, and  is that of an ideal gas. The free volume Vf is
calculated by integrating the RFSDF.

(3)

where r f is a cut-off distance to specify the molecular vol-
ume and this has been formally defined as half of the av
age nearest-neighbor distance. When the cut-off distance
been defined, the free volume for an ideal gas is sim

, because RFSDF for ideal gas is unity 
all values of r. The cut-off distance for hard sphere fluid so
vent, , has been defined9,10 as follows: 

(4)

where ρ is the number density and σ is the diameter of the
hard sphere. In order to calculate the free volume of so
that has a different size from the solvent molecule, it is 
easy to define the cut-off distance for the solute molec

ζ r( ) = Acceptances of displacement of r
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surrounded by solvent molecules, but the following mean
value has been used7 as an analogy of the case of pressure in
Eq. (7) below,

(5)

where d is the ratio of the diameter of solute to that of sol-
vent and when the sizes of solvent and solute molecules are
the same (d = 1), the cut-off distances become equal to each
other. For the excess chemical potential over an ideal gas,
µ ex, then the entropy term is added to the pressure term, 

(6)

in which k is the Boltzmann constant and T is temperature.
The excess internal energy is zero for hard-sphere interac-
tions. The excess pressure of solute is calculated from the
radial distribution function (RDF) as follows,11

(7)

In Eq. (7), g10 is the RDF of solvent molecules around a
solute molecule, and g10((1+d)/2) is the value when the sur-
faces of solute and solvent molecules contact. 

For the pressure of solvent, , the following equation
has been used. 

(8)

where N is the number of molecules used in the simulation
and g00(1) is the value of RDF of solvent-solvent at contact
and the last term is a small correction of the contribution of
solvent-solute interaction in Eq. (7). For the entropy of sol-
vent molecule, the RFSDF for solvent has been used and the
cut-off distance in Eq. (4) has been used. For the entropy of
solute molecule, the RFSDF for solute has been calculated
separately and the cut-off distance in Eq. (5) has been used. 

We have used 108 molecules (107 solvent molecules and
one solute molecule) in MC calculations and have taken an
average of 4× 106 samplings (trials of move) for solvent
molecules and 2× 106 samplings for solute molecule after
discarding 6× 105 configurations starting from the initial
face-centered-cubic structure. The densities of hard-sphere
solids are chosen as ρσ 3 = 1.0, 1.1, and 1.2.

 
Results and Discussion

In the previous work,7 it has been stimulative that the
excess chemical potentials over ideal gases were evaluated
well using the method explained in the above section for the
hard-sphere fluid solution system, and the good results were
obtained at high densities and for large solutes. Therefore the
results of calculations in this work are also believed reason-
able even though there have been no other comparable pre-
dictions or calculations so far. The RDFs of solvent
molecules around the solute molecule at ρσ 3= 1.1 for differ-
ent sizes of solute are shown in Figure 1. As the size of sol-

ute increases, the first peaks of RDF increase but the R
of small sizes take on different shapes from those of la
sizes, i.e., a phase transition occurs. In case of the small s
of solute, the solute molecule behaves as like as a fluid e
though the main solvent structure is a solid, and for la
sizes of solute (even smaller than the size of solvent m
cule) the solute becomes a solid. For the fluid phase of 
ute, the tangents of RDFs at contacting surfaces of so
and solvent molecules are steep, however the slopes for 
phase are low. The negative tangent at contacting surfa
for d = 0.8 is interesting, i.e., the highest peak is at r = σ.
This means that the lattice of nearest neighbor of solut
not disrupted but maintains the original solid structure 
that a big hole as large as the size of solvent molecul
formed. Therefore the solute molecule is located around
middle of the hole and thus the contacting probability is ev
smaller than the peak at r = σ. (This can be also seen fo
d = 0.6.) The RDFs for larger solutes than d = 1.0 are not
shown in the figure since the first peaks are very high. T
first peaks can be calculated from the pressure data in T
1 with Eq. (7). 

In Figure 2, the RFSDFs of solute molecule in the cav
surrounded by solvent molecules at the same density a
Figure 1 are shown. From Figure 2, one can see that
RFSDF of solute becomes off from that of an ideal gas (i.e.,
unity for all values of r) as the size of solute becomes larg
and can also examine the phase transition between d = 0.4
and 0.6. The RDFs and RFSDFs for other denisties sh
similar trend to those of ρσ3 = 1.1 and therefore they are no
shown. The fluid phase and solid phase are verified by 
curvature shape of RFSDF: It has been found10 that when
-ln ζ(r) is fitted to the function -ln ζ(r) = Ar + Br3, the coeffi-
cient B is negative and the function is convex for fluid phas
and the coefficient B is positive (the function is concave) fo
solid phase. The least square fit values of the coefficientA
and B are listed in Table 1 to describe the RFSDFs for futu
uses. The excess pressures and entropies calculated 

r f = 
1 d+( )

2
-----------------r0

f

µex

kT
------- =  

pexV
RT

-----------  − 
Sex

R
-------

pexV
RT

-----------  = 
2
3
---πρ σ1 d+

2
------------ 

 
3

g10
1 d+

2
------------ 

  .

p0
ex

p0
exV

RT
----------- = 

N 1–
N

------------- 
  2

3
---πρσ3

g00 1( ) + 
1
N
----pexV

RT
-----------

Figure 1. The radial distribution functions of hard-sphere solve
molecules around a hard-sphere solute molecule at ρσ 3 =1.1 for
different sizes of solute denoted on the curves. The dotted lines
fluid phases and the solid lines are solid phases. σ is the diameter of
solvent molecule.
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these two functions (RDF with Eq. (7) and RFSDF with Eq
(2) and (3), respectively) and the excess chemical poten
are given in Table 1. The error ranges are not given but
large (see ref. [7]) and these can be estimated as the d
ence of the values of solvent and solute for d = 1. Those val-
ues must be identical and so the differences indicate 
fluctuation range of this calculation. The excess chemi
potentials of solute in Table 1 are plotted in Figure 3. T
phase transition is clearly seen in Figure 3. The phase tra
tion occurs at the smaller size of solute as the more incre
of the solvent density. In other words, the higher dens
solid melts by inserting the smaller solute. The chemi
potentials over about 14 kT cannot be obtained by the inse
tion method and the chemical potentials of solid phase c
not be calculated by integrating the pressure (equation

Table 1. The excess pressures, entropies, and the chemical
potentials of solvent and solute of hard-sphere system and
the coefficientsa A and B at different solute-solvent ratios

d 
Solvent Solute

A B

ρσ 3 = 1.0
0.0 9.33 4.66 13.99 0.54 0.33 0.87 1.730 -0.483
0.1 9.32 4.66 13.98 0.96 0.55 1.51 2.720 -1.348
0.2 9.32 4.67 13.99 1.62 0.87 2.50 4.117 -2.225
0.3 9.39 4.67 14.06 2.49 1.28 3.77 5.674 -2.910
0.4 9.28 4.67 13.95 3.78 1.85 5.63 8.068 -6.596
0.5 9.47 4.69 14.16 6.23 2.60 8.83  11.901 -17.527
0.6 9.36 4.67 14.03 3.03 1.39 4.42 4.973  0.516
0.7 9.24 4.66 13.90 2.74 1.76 4.50 5.014  9.121
0.8 9.26 4.67 13.93 3.93 2.47 6.40 6.651 16.203
0.9 9.32 4.69 14.01 6.99 3.45 10.44 9.779 23.980
1.0 9.26 4.68 13.95 9.26 4.75 14.01 14.714 69.965
1.1 9.21 4.70 13.91 14.63 5.95 20.58 22.642 105.630
1.2 9.48 4.74 14.22 24.68 7.14 31.81 33.905 135.761
1.3 9.69 4.80 14.49 37.39 8.24 45.63 48.027 168.251
1.4  10.31 4.89 15.20 44.92 8.82 53.74 55.525 379.721
1.5 11.12 5.00 16.12 61.36 9.78 71.14 73.594 599.411
1.6  12.35 5.13 17.48 86.73 10.77 97.50  100.0611 854.991

ρσ 3  = 1.1
0.0 12.34 5.58 17.9210.6810.39 11.08 12.181   -1.020
0.1 12.43 5.59 18.0211.2610.68 11.94 1 3.554  -2.284
0.2 12.40 5.58 17.9812.1611.08 13.24 15.329 -3.061
0.3 12.36 5.59 17.9512.9611.45 14.41 16.317 -5.876
0.4 12.36 5.60 17.9614.6811.57 16.25 18.466 -18.175
0.5 12.39 5.59 17.9811.4710.99 12.46 12.904 3.334
0.6 12.36 5.59 17.9511.8511.18 13.03 13.408 9.025
0.7 12.26 5.59 17.8512.5211.73 14.25 14.412 17.587
0.8 12.30 5.59 17.8913.6912.65 16.35 16.272 36.153
0.9 12.20 5.59 17.79 16.1313.96 10.08 10.121 83.821
1.0 12.26 5.60 17.86 11.8715.63 16.50 19.004 190.661
1.1 12.48 5.64 18.12 25.8817.32 33.20 36.518  411.791
1.2 12.96 5.72 18.68 45.6318.78 54.41 63.328 673.221
1.3 14.23 5.84 20.07 72.63 10.35 82.98 95.265 2531.711
1.4 16.06 6.01 22.07 116.84 11.54 128.38 141.905 4555.911
1.5 19.72 6.24 25.96 235.84 13.77 249.51 286.515 49870.1 1

ρσ 3  = 1.2
0.0 18.80 6.84 25.64 110.8310.47 111.30 112.630  -1.012
0.1 18.98 6.84 25.82 111.6710.84 112.51 114.470  -2.650
0.2 18.91 6.85 25.76112.5911.20 113.79 115.992 -0.343
0.3 19.01 6.86 25.87111.1310.57 111.70 112.474 0.447
0.4 18.88 6.84 25.72111.30 10.67 111.97 112.614  2.358
0.5 19.01 6.85 25.86111.5010.86 112.36 112.862 6.106
0.6 18.96 6.84 25.80111.8511.20 113.05 113.362 13.061
0.7 19.01 6.85 25.86112.4911.85 114.34 114.216  30.385
0.8 18.81 6.84 25.65113.7712.94 116.71 116.099  75.586
0.9 18.92 6.85 25.77116.9114.53 11.44111.193 229.971
1.0 18.76 6.85 25.61118.0116.85 124.86 127.977  1115.511
1.1 19.48 6.93 26.41157.7119.53 67.24181.023 4612.911
1.2 21.86 7.15 29.01 121.99 11.64 133.55 159.566 19425.411
1.3 27.00 7.41 34.41 254.49 14.51 268.95 382.686 355350.111

a The coefficients of the function -ln ζ(r) = Ar + Br3.
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Figure 2. The radial free-space distribution functions of a har
sphere solute molecule surrounded by hard-sphere sol
molecules at ρσ 3 =1.1 for different sizes of solute denoted on th
curves. The dotted lines (d = 0.0, 0.2, and 0.4) are fluid phases an
the solid lines (d = 0.6, 0.8, 1.0, 1.2, and 1.4) are solid phases. σ is
the diameter of solvent molecule.

Figure 3. The excess chemical potentials of hard-sphere solu
of different sizes solvated in hard-sphere solids at the dens
denoted on the curves. Inlet is the same for small sizes of solute
the scale of vertical axis for the chemical potential is expanded.
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. 

D.;

A.
state) since there exists a phase transition. However these
difficulties are overcome in this method. 

One of the main advantages of this method is that the
entropy and chemical potential are calculated for the system
of high density solvent and large solute. We can also calcu-
late the pressure and the entropy separately in one simula-
tion. And another importance is that the entropy of a single
molecule (solute) can be calculated by tracing the molecule
separately from other (solvent) molecules. When a small
number of molecules are used in the simulation, the effect of
the solute size on pressure could be larger (see the solvent
pressures in Table 1) than the case with infinite number of
molecules in the simulation. Therefore, we are studying the
effect of the number of molecules in simulations. 
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