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The entropies and chemical potentials of hard-sphere solutes solvated in hard-sphere solids were calculated by
Monte Carlo method using the radial free-space distribution function. This method is based on calculating the
entropy by comparing the free volume of a molecule with that of an ideal gas, and is applicable even when the
size of solute is very large and the solvent is a solid. When the diameter of hard-sphere solute is small the solute
molecule behaves as like as a fluid in solid structures, but when the diameter of solute becomes large, a fluid-
to-solid phase transition takes place. The fluid-to-solid phase transition occurs at the region of the smaller size
of solute with the more increase of solvent density. The least square fit values of analytical form of the radial
free-space distribution functions of solute molecules are presented for future uses.

Introduction explained again.
The RFSDF{(r) , is obtained in MC procedure by the fol-
The chemical potential is one of the most important therfowing ratio:

modynamic properties since it is a criterion to determine the
direction of spontaneous processes. The entropy is involved
in the chemical potential, however the theoretical estimation
for entropy is not simply made by ensemble avetdfee  (r) starts from unity at = 0 and decreases exponentially at
insertion method;*i.e., calculating the probability of insert- larger. The RFSDF is the distribution function of particle-
ing a particle into an equilibrated ensemble, has been theavity (including the cavity formed by removing the parti-
most practical one that has been used in Monte Carlo (MQjle) relations. In the case of hard-sphere fluid and solid, the
simulations. The chemical potentials of hard-sphere solutegarticle and cavity are interchangeable. The excess entropy
solvated in hard-sphere fluid solvents have been calctfatedover an ideal gas is calculated by comparing the free vol-
by the insertion method. However the insertion method has ames as follows,
limit when the density of a system is high and the size of sol-
ute is very large. This limit is reached when the chemical £ R In%ﬂg @)
potentials are greater than aboutklidbecause in this case 0
the insertion probability is less than40i.e., the lowest 'd
probability detected when the usual number of simulatiorin which R is the gas constar¥, is the molecular free vol-
trial steps are of the order of millions. In the previous work, ume, and\/ifd is that of an ideal gas. The free voluftris
the different method employing the radial free-space districalculated by integrating the RFSDF.
bution function (RFSDF) has been used. The method using ;
RFSDF overcomes the difficultfethat might arise when the vi= 471J'r r2¢(rydr ©))
density is high and the size of solute is very large. This 0
method has been provided good results for estimating th@hererfis a cut-off distance to specify tieolecularvol-
free energies of fluid and solid systems with hard-sphere andme and this has been formally defined as half of the aver-
Lennard-Jones potentials and for calculating the solvatiomage nearest-neighbor distance. When the cut-off distance has
free energies of different sizes of hard-sphere solutes ibeen defined, the free volume for an ideal gas is simply
hard-sphere fluid? In this work, the method is applied to V/,=(4/3)n(r )3, because RFSDF for ideal gas is unity at
the system of hard-sphere solutes with different sizes sohll values of. The cut-off distance for hard sphere fluid sol-

() = Acceptances of displacementrof )
Trials of displacement af

vated in hard-sphere solids. vent, ré , has been defined as follows:
Method ro = % 4
2p" "o

In order to calculate the entropies and chemical potentials
employing the RFSDF of hard-sphere solutes solvated invherep is the number density aralis the diameter of the
hard-sphere solids, the same method as in ref. [7] has beb&ard sphere. In order to calculate the free volume of solute
used except that the solvent structures are, in this paper, stihat has a different size from the solvent molecule, it is not
ids instead of fluids. However the method is briefly easy to define the cut-off distance for the solute molecule
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surrounded by solvent molecules, but the following mear

value has been uskass an analogy of the case of pressure ir 61 10 3
] 1 : po =1.1
Eq. (7) below, '
r'= G50 ©

whered is the ratio of the diameter of solute to that of sol-
vent and when the sizes of solvent and solute molecules a
the samed = 1), the cut-off distances become equal to eact
other. For the excess chemical potential over an ideal ga
1% then the entropy term is added to the pressure term,

u_ pv _ s
kT~ RT R ©6)

rlo
The excess internal energy is zero for hard-sphere interaFigure 1. The radial distribution functions of hard-sphere sol

in which k is the Boltzmann constant afids temperature.

tions. The excess pressure of solute is calculated from trMolecules around a hard-sphere solute molecyfrdt=1.1 fo
different sizes of solute denoted on the curves. The dotted lir

radial distribution function (RDF) as follow, fluid phases and the solid lines are solid phasésthe diameter «
EeXV 2 1+d l+d solvent molecule.
ute increases, the first peaks of RDF increase but the RDFs

In Eq. (7),010 is the RDF of solvent molecules around a of small sizes take on different shapes from those of large
solute molecule, angio((1+d)/2) is the value when the sur- sizesj.e., a phase transition occurs. In case of the small sizes

faces of solute and solvent molecules contact. of solute, the solute molecule behaves as like as a fluid even
For the pressure of solvery” , the following equationthough the main solvent structure is a solid, and for large
has been used. sizes of solute (even smaller than the size of solvent mole-
ex e cule) the solute becomes a solid. For the fluid phase of sol-

pIg_T = B!\%Egenpasgoo(l) + %IPR—X_?_/ (8) ute, the tangents of RDFs at contacting surfaces of solute

and solvent molecules are steep, however the slopes for solid
whereN is the number of molecules used in the simulationphase are low. The negative tangent at contacting surfaces
andgy(1) is the value of RDF of solvent-solvent at contactfor d = 0.8 is interestingi.e., the highest peak is at= g.
and the last term is a small correction of the contribution ofThis means that the lattice of nearest neighbor of solute is
solvent-solute interaction in Eq. (7). For the entropy of sol-not disrupted but maintains the original solid structure so
vent molecule, the RFSDF for solvent has been used and thieat a big hole as large as the size of solvent molecule is
cut-off distance in Eq. (4) has been used. For the entropy dérmed. Therefore the solute molecule is located around the
solute molecule, the RFSDF for solute has been calculateshiddle of the hole and thus the contacting probability is even
separately and the cut-off distance in Eq. (5) has been usedsmaller than the peak at= . (This can be also seen for
We have used 108 molecules (107 solvent molecules ardi=0.6.) The RDFs for larger solutes thar 1.0 are not
one solute molecule) in MC calculations and have taken ashown in the figure since the first peaks are very high. The
average of 4« 10° samplings (trials of move) for solvent first peaks can be calculated from the pressure data in Table
molecules and 2 10° samplings for solute molecule after 1 with Eq. (7).
discarding 6x 10° configurations starting from the initial In Figure 2, the RFSDFs of solute molecule in the cavity
face-centered-cubic structure. The densities of hard-sphesairrounded by solvent molecules at the same density as in

solids are chosen @&3=1.0, 1.1, and 1.2. Figure 1 are shown. From Figure 2, one can see that the
RFSDF of solute becomes off from that of an ideal ges (
Results and Discussion unity for all values of) as the size of solute becomes large,

and can also examine the phase transition betdeeh4

In the previous work,it has been stimulative that the and 0.6. The RDFs and RFSDFs for other denisties show
excess chemical potentials over ideal gases were evaluatsiilar trend to those gio® = 1.1 and therefore they are not
well using the method explained in the above section for thehown. The fluid phase and solid phase are verified by the
hard-sphere fluid solution system, and the good results wereurvature shape of RFSDF: It has been foUtitat when
obtained at high densities and for large solutes. Therefore thén (r) is fitted to the function -Ig(r) = Ar + Br®, the coeffi-
results of calculations in this work are also believed reasorcientB is negative and the function is convex for fluid phase,
able even though there have been no other comparable praad the coefficienB is positive (the function is concave) for
dictions or calculations so far. The RDFs of solventsolid phase. The least square fit values of the coeffichents
molecules around the solute moleculpat= 1.1 for differ-  andB are listed in Table 1 to describe the RFSDFs for future
ent sizes of solute are shown in Figure 1. As the size of solises. The excess pressures and entropies calculated using
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Table 1. The excess pressures, entropies, and the chemic 1.0

potentials of solvent and solute of hard-sphere system ar '

the coefficient8A andB at different solute-solvent ratios .\

Solvent Solute
dpgv_su pv_ st 5 06-
RT R kT RT R kT

po*=1.0 §

0.0 9.33 466 13.99 0.54 0.33 087 1.730 -0.483 041

0.1 932 466 1398 096 055 151 2720 -1.348

0.2 932 467 1399 162 0.87 250 4.117 -2.225 0.2

0.3 9.39 467 1406 249 128 3.77 5.674 -2.910

0.4 9.28 467 1395 378 1.85 5.63 8.068 -6.596 0.0

05 947 469 1416 6.23 260 8.83 11.901  -17.527 " 00 o1 0.2 03 04 05

0.6 9.36 4.67 14.03 3.03 1.39 442 4973 0.516 rlc

0.7 9.24 466 1390 274 176 450 5.014 9.121Figure 2. The radial free-space distribution functions of a t

0.8 9.26 4.67 1393 393 247 6.40 6.651 16.203sphere solute molecule surrounded by hard-sphere ¢

09 932 469 1401 6.99 3.45 1044 9.779 23.980Molecules apo®=1.1 for different sizes of solute denoted or

curves. The dotted lined € 0.0, 0.2, and 0.4) are fluid phases

1.0 9.26 4.68 1395 9.26 475 1401 14.714 69'%sthe solid linesd = 0.6, 0.8(7_1.0, 1.2, and 1.4; are solid%hasés

1.1 9.21 470 1391 14.63 5.95 20.58 22.642 105'63Cthe diameter of solvent molecule.

1.2 948 474 1422 2468 7.14 31.81 33.905 135.76

1.3 9.69 4.80 14.49 37.39 8.24 45.63 48.027 163.25 2

1.4 10.31 4.89 1520 44.92 8.82 53.74 55525  379.72 ° -] p

15 11.12 5.00 16.12 61.36 9.78 71.14 73594  599.41 80- po=t2f P

1.6 12.35 513 17.48 86.7310.77 97.50 100.06 854.99 704 11
po3=11 g

0.0 12.34 558 17.92 0.68 0.39 1.08 2.181 -1.020 60+ / /1.0

0.1 1243 559 18.02 1.26 0.68 1.94 3.554 -2.284 50 /°

0.2 1240 558 17.98 2.16 1.08 3.24 5.329 -3.061 - | E/j

0.3 12.36 559 17.95296 145 441 6.317 -5.876 < 404 //

0.4 12.36 5.60 17.96 4.68 1.57 6.25 8.466 -18.175 d

0.5 12.39 559 17.98 1.47 0.99 246 2904 3.334 304 //

0.6 12.36 5.59 17.95 1.85 1.18 3.03 3.408 9.025 204 /O

0.7 12.26 559 17.85 252 1.73 425 4.412 17.587 8//

0.8 12.30 559 17.89 3.69 2.65 6.35 6.272 36.153 107

0.9 12,20 559 17.79 6.13 3.96 10.08 10.121 83.821 0= . :

1.0 12.26 5.60 17.86 11.8B.63 16.50 19.004 190.66 0.0 . 1.2 1.6

11 12.48 564 18.12 25.89.32 33.20 36.518 411.79 d

1.2 12.96 5.72 18.68 45.68.78 5441 63.328 673.22  Figure 3. The excess chemical potentials of hard-sphere s

1.3 14.23 5.84 20.07 72.6310.35 82.98 95.265 2531.7 of different sizes solvated in hard-sphere solids at the de

1.4 16.06 6.01 22.07 116.84 11.54 128.38 141.904555.9 denoted on the curves. Inlet is the same for small sizes of sol

15 19.72 6.24 2596235 83.7 249.5 28651  49870. the scale of vertical axis for the chemical potential is expande

3—
poo-o 118-20 6.84 2564 0.83 0.47 1.30 2.630 -1.012 these two functions (RDF with Eq (7) and RFSDF with Eqs
0.1 18.98 6.84 2582 1.67 0.84 251 4470  -2.650 (2) and (3), respectively) and the excess chemical potentials
0.2 1891 6.85 25.76 2.59 1.20 3.79 5.992 .0.343 are given in Table 1. The error ranges are not given but not
03 1901 6.86 25.87 1.13 057 1.70 2.474 0.447 large (see ref. [7]) and these can be estimated as the differ-
0.4 18.88 6.84 2572 1.30 0.67 1.97 2.614 2.358 ence of the values of solvent and solutedferl. Those val-

0.5 19.01 6.85 25.86 1.50 0.86 2.36 2.862 6.106 ues must be identical and so the differences indicate the
0.6 18.96 6.84 25.801.85 1.20 3.05 3.362 13.061 fluctuation range of this calculation. The excess chemical
0.7 19.01 6.85 25.86 249 1.85 4.34 4.216 30.385 potentials of solute in Table 1 are plotted in Figure 3. The
0.8 18.81 6.84 25.65 3.77 2.94 6.71 6.099 75.586 phase transition is clearly seen in Figure 3. The phase transi-
0.9 18.92 6.85 2577 6.91 453 11.44 11.193  229.97  tion occurs at the smaller size of solute as the more increase
1.0 18.76 6.85 25.6118.01 6.85 24.86 27.977 11155 of the solvent density. In other words, the higher density
1.1 1948 6.93 26.4157.71 9.53 67.24 81.023 4612.9 solid melts by inserting the smaller solute. The chemical
122186 7.15 29.01121491.€ 133.% 159.56¢ 19425.4 potentials over about Il cannot be obtained by the inser-
1.3 27.00 7.41 34.41254445 268.¢ 382.6& 355350

3 The coefficients of the function -(r) = Ar + Br®.

tion method and the chemical potentials of solid phase can-
not be calculated by integrating the pressure (equation of
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state) since there exists a phase transition. However these
difficulties are overcome in this method.
One of the main advantages of this method is that the

entropy and chemical potential are calculated for the systemy
of high density solvent and large solute. We can also calcu-3,
late the pressure and the entropy separately in one simula4.

tion. And another importance is that the entropy single

molecule (solute) can be calculated by tracing the moleculeb.

separately from other (solvent) molecules. When a small

number of molecules are used in the simulation, the effect of6-

the solute size on pressure could be larger (see the solvent

pressures in Table 1) than the case with infinite number of "

molecules in the simulation. Therefore, we are studying the8

effect of the number of molecules in simulations.
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