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The relationship between thermal decomposition temperature and structure of a new data set of eighty

monomers of different polymers were studied by multiple linear regression (MLR). The stepwise method was

used in order to variable selection. The best descriptors were selected from over 1400 descriptors including;

topological, geometrical, electronic and hybrid descriptors. The effect of number of descriptors on the

correlation coefficient (R) and F-ratio were considered. Two models were suggested, one model having four

descriptors (R2 = 0.894, Q2
cv = 0.900, F = 172.1) and other model involving 13 descriptors (R2 = 0.956, Q2

cv =

0.956, F = 125.4). 
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Introduction

Nowadays, before synthesizing a new material, database

searching can provide information on related reactions to

assist in designing viable pathways to synthesize it. In addi-

tion, computational chemistry can help to determine whether

these pathways are favored from the thermodynamic point

of view. Quantitative structure-property relationships (QSPR)

studies can help to predict the properties of the compound of

interest. The concept of QSPR is to transform searches for

compounds with desired properties using chemical institu-

tion and experience into a mathematically quantified and

computerized form. Once a correlation between structure

and property found, any number of compounds, including

those not yet synthesized, can be readily screened on

computer in order to select structures with the properties

desired. Thus, QSPR approach conserves resources and

accelerates the process of development of new molecules for

use as any purpose. 

The different properties of polymer such as thermal stabi-

lity, viscosity and dielectric constant, have been studied by

QSPR.1-7 Thermal stability of a material is stability against

degradation upon exposure to elevated temperatures in an

inert environment. Polymers are often exposed to high

temperatures during processing and/or use. Thus, thermal

stability is among the most important properties of polymers

for a wide range of applications.8 Thermal stability can be

expressed with the temperature of ten percent of decom-

position Td,10%, which is defined as temperature at which

10% loss of weight during pyrolysis was recorded by TGA

at a heating rate of 10 °C/min.

It can be also described with the molar thermal decom-

position function Yd,1/2 that correlates Td,1/2, with an equation:

Yd,1/2 = Td,1/2 × M (M is the molecular weight per repeating

unit). Td,1/2 is defined same Td,10%, only for half decomposi-

tion.

Although there are numerous techniques for measuring

thermal stability, it is difficulty to interpret the data and/or to

compare data obtained in different laboratories or under

different test condition.8,9 Some researchers have found that

Yd,1/2 values for polymers can be estimated on the basis of

quantitative structure–property relationship models.10-13 

One of the best-known examples of the group additive

approach is that of van Krevelen.10 This method provides a

rapid and computationally inexpensive approach to the

estimation of Yd,1/2 value, but is purely empirical approach

and limited to systems composed only of functional groups

that have been previously investigated. Furthermore, the

group contributions method is only approximate since this

approach fails to account for the presence of neighboring

groups or conformational influences. Bicerano extended the

group additive concept for the prediction of Yd,1/2, based on

21 topological and constitutional descriptors.8 There are too

many descriptors involved in the models though the predic-

tions are good accuracy. In addition, Sun et al. obtained two

kinds of calculated models on polymeric Yd,1/2 by artificial

neural networks for linear chain polymers.11 After this work,

Sun et al. further built two models on polymeric Yd,1/2 for the

same polymeric data set by fuzzy set theory.12 The group

average method is used to calculate the descriptors for two

models, and the connectivity indexes method is used for

them.

On the other hand, the quantum chemical descriptors used

in QSPR models encode information about the electronic

structure of the molecule and thus implicitly account for the

cooperative effects between functional groups, charge redis-

tribution, and possible hydrogen bonding in the polymer.14

The two quantum chemical descriptors, obtained from the

monomers of vinyl polymers were used to predict the molar

thermal decomposition function Yd,1/2. A more physically

meaningful quantitative structure-property relationship (QSPR)

model obtained from the training set with multiple linear

stepwise regression analysis.7

The goal is to find one equation that is function of a small

number of structure-based molecular descriptors that accu-

rately predicts the experimental property. We must balance
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between increasing in number of molecular descriptors in

the selected model and increasing in accuracy of it. This

paper is the first time to produce a robust QSPR model that

could predict Td,10% values for polymers with different

structure and family by using 1497 descriptors in 18 groups,

which are calculated from the monomers of polymers by

PM3 semi-empirical method. The effect of number of de-

scriptors on statistical parameters has been analysed.

Material and Methods

Data set. One of the steps necessary for this research was

the assembly of a data set. A number of structurally hetero-

geneous addition linear polymers were selected. The report-

ed experimental data have been taken from Refs. [15-25].

The Thermal stability evaluation of the resulting polymers

was carried out by TGA/DTG in nitrogen at a heating rate of

10 °C/min. The thermograms of these polymers were almost

similar with each other.

It is impossible to calculate descriptors directly for an

entire molecule because all the polymers have wide distri-

bution of molecular weight and possess high molecular

weight. As we know, if the molecular weight is high enough,

the terminal groups hold only a very small proportion in a

polymer and its effect on the properties can be ignored.

Molecular descriptors calculated directly from the structure

of the repeat units can be used for the study of QSPRs for

polymers, since all the properties depends on the chemical

structure of the polymer molecule, and all this structure was

conditioned by the repeat unit structure. Therefore, we adopt

this method and focus on the following model to calculate

molecular descriptors. The structures for polymers were

endcapped with last group of opposing side. In the next step,

the molecular structure of monomer compounds used in the

polymerization of polymers, were used to determine the

molecular descriptors of polymers. After providing the data

set, all molecules (monomer of polymer) were drawn into

Hyperchem software26 and optimized using the PM3 semi-

empirical method4,27 in Hyperchem and thereafter, topologi-

cal, geometric, and electronic features of each molecule

were calculated by the descriptor generation routines

Dragon.28 Topological descriptors provide information about

molecular shape and connectivity. Examples of these include

the electrotopological state indices and molecular distance

edge information geometric descriptors encode features such

as shapes shadow projections, and solvent accessible surface

areas. Electronic descriptors describe the electronic environ-

ment that exists within the molecule such as partial charges

on each atom. There are also several hybrid descriptors,

which combine several aspects of molecules molecular

descriptors were calculated from the molecular structure of

molecules by means of Dragon software.28 

Stepwise multiple regression. In QSPR studies, the goal

is to find one or more equations that are functions of a small

number of structure based molecular descriptors that accu-

rately predict the experimental property. As it is possible to

generate a large number of molecular descriptors for each

compound in the data set, the problem becomes how to

efficiently select the set of molecular descriptors that yield

an accurate relationship. If a method is sufficiently fast, it

can be used to generate relationships with different numbers

of molecular descriptors. The most commonly used method

for this problem is the stepwise approach, which can run

forward or backward.

Stepwise method was used to select the most appropriate

descriptors. It is a popular technique that combines forward

selection and backward elimination. It is essentially a for-

ward selection approach, but at each step it considers the

possibility of deleting a variable as in the backward elimi-

nation approach, provided that the number of model vari-

ables is greater than two. The two basic elements of the step-

wise method are forward selection and backward elimi-

nation. In the forward selection the variable considered for

inclusion at any step is the one yielding the largest single

degree of freedom F-ratio among the variables that are

eligible for inclusion. Consequently, at each step, the jth

variable is added to a k-size model if 

 (1)

In the above inequality RSS is the residual sum of squares

and s is the mean square error. The subscript k + j refers to

quantities computed when the jth variable is added to the k

variables that are already included in the model. In backward

elimination the variable considered for elimination at any

step is the one yielding the minimum single degree of

freedom F-ratio among the variables that are included in the

model. The variable is eliminated only if the corresponding

F-ratio does not exceed a specified value Fout. Consequently,

at each step, the jth variable is eliminated from the k-size

model if

 (2)

The subscript k-j refers to quantities computed when the jth

variable is eliminated from the k variables that have been

included in the model so far. The variable selection was done

by stepwise method which implemented in SPSS software. 

Cross-validation technique. The reliability of the pro-

posed method was explored using the cross-validation

method. Based on this technique, a number of modified data

sets are created by deleting in each case one or a small group

(leave-some-out) of objects.29-31 For each data set, an input-

output model is developed, based on the utilized modeling

technique. Each model is evaluated, by measuring its

accuracy in predicting the responses of the remaining data

(the ones that have not been utilized in the development of

the model). In particular, the leave-one-out (LOO) procedure

was utilized in this study, which produces a number of

models, by deleting each time one object from the training

set. Obviously, the number of models produced by the LOO

procedure is equal to the number of available examples n.
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Prediction error sum of squares (PRESS) is a standard index

to measure the accuracy of a modeling method based on the

cross-validation technique. Based on the PRESS and SSY

(sum of squares of deviations of the experimental values

from their mean) statistics, the Q2 and SPRESS values can be

easily calculated. The formulae used to calculate all the

aforementioned statistics are presented below (Eqs. (3) and

(4)): 

 (3)

 (4)

For a more exhaustive testing of the predictive power of

the model, except from the classical LOO cross-validation

technique, validation of the model was carried out by a leave

one-out (LOO) cross validation procedure. From the training

set we randomly selected one compound. Each group was

left out and that group was predicted by the model

developed from the remaining observations. This procedure

was carried out several times.

Estimation of the predictive ability of a QSPR model.

According to Tropsha32 the predictive power of a QSPR

model can be conveniently estimated by an external R2
cv;ext

(Eq. (5)).

 (5)

where  is the averaged value for the dependent variable

for the training set. Furthermore, the same group32,33 consi-

dered a QSAR model predictive, if the following conditions

are satisfied:

 (6)

 (7)

  or    (8)
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Table 1. List of monomers of polymers* used in this research and their thermal decomposition temperature Td,10%.

No Monomers used to prepare the polymers Td,10%

Training set

1 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and m-phenylenediamine 541

2 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and N-3,5-diaminophenylphthalimide 554

3 1,3-bis(N-trimellitoyl)benzene and m-phenylenediamine 528

4 1,3-bis(N-trimellitoyl)benzene and N-3,5-diaminophenylphthalimide 537

5 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and resorcinol 455

6 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and hydroquinone 461

7 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 4,4'-dihydroxybiphenyl 473

8 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 2,2'-dihydroxybiphenyl 477

9 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 2,2'-dimethyl-4,4'-dihydroxybiphenyl 458

10 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and bisphenol-A 451

11 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 2,7-dihydroxynaphthalene 460

12 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 1,5-dihydroxynaphthalene 468

13 N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride and m-phenylenediamine 516

14 N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride and 2,6-diaminopyridine 520

15 N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride and 4,4'-diaminophenylene ether 528

16 N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride and N-(3,5-diaminophenyl)phthalimide 528

17 N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride and 2,2'-bis(4-aminophenoxy)-1,1'-binaphthyl 543

18 N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride and 4-p-biphenyl-2,6-bis(4-aminophenyl)pyridine 539

19 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride and m-phenylenediamine 506

20 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride and 2,6-diaminopyridine 508

21 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride and 4,4'-diaminophenylene ether 513

22 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride and N-(3,5-diaminophenyl)phthalimide 516

23 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride and 2,2'-bis(4-aminophenoxy)-1,1'-binaphthyl 522

24 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride and 4-p-biphenyl-2,6-bis(4-aminophenyl)pyridine 518

25 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and resorcinol 566

26 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and hydroquinone 575

27 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and 4,4'-dihydroxybiphenyl 573

28 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and 2,2'-dihydroxy-1,1'-binaphthyl 577

29 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and m-phenylene diamine 579
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Table 1. continued

No Monomers used to prepare the polymers Td,10%

30 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and p-phenylene diamine 594

31 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and benzidine 596

32 2,2'-bis(N-trimellitoyl)-1,1'-binaphthyl and 2,2'-diamino-1,1'-binaphthyl 604

33 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and resorcinol 398

34 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 4,4'-dihydroxybiphenyl 410

35 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and bisphenol-A 406

36 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,2'-dihydroxybiphenyl 392

37 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,2'-dihydroxy-1,1'-binaphthyl 416

38 pyromellitic dianhydride and m-phenylene diamine 600

39 pyromellitic dianhydride and 4,4'-diaminophenylene ether 528

40 3-trimellitimidobenzoic acid and m-phenylene diamine 540

41 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and m-phenylene diamine 495

42 3,6-dimethyl-1,4-bis(methyleneisocyanate) and benzidine 340

43 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and N-3,5-Diaminophenylphthalimide 554

44 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and m-phenylene diamine 541

45 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and resorcinol 455

46 2,2'-bis(4-trimellitimidophenoxy)biphenyl and m-phenylene diamine 507

47 2,2'-bis(4-trimellitimidophenoxy)biphenyl and 2,6-diaminopyridine 511

48 2,2'-bis(4-trimellitimidophenoxy)biphenyl and p-phenylene diamine 520

49 2,2'-bis(4-trimellitimidophenoxy)biphenyl and 4,4'-diaminophenylene ether 531

50 2,2'-bis(4-trimellitimidophenoxy)biphenyl and 4-phenyl-2,6-bis(4-aminophenyl)pyridine 545

Testing set

51 2,2'-bis(4-trimellitimidophenoxy)-1,1'-binaphthyl and m-phenylene diamine 512

52 2,2'-bis(4-trimellitimidophenoxy)-1,1'-binaphthyl and 2,6-diaminopyridine 517

53 2,2'-bis(4-trimellitimidophenoxy)-1,1'-binaphthyl and p-phenylene diamine 524

54 2,2'-bis(4-trimellitimidophenoxy)-1,1'-binaphthyl and 4,4'-diaminophenylene ether 535

55 4-phenyl-2,6-bis(4-trimellitimidophenyl)pyridine and m-phenylene diamine 485

56 4-phenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,6-diaminopyridine 502

57 4-phenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 4-phenyl-2,6-bis(4-aminophenyl)pyridine 516

58 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and m-phenylene diamine 485

59 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,6-diaminopyridine 510

60 2,2'-bis(4-trimellitimidophenoxy)biphenyl and resorcinol 453

61 2,2'-bis(4-trimellitimidophenoxy)biphenyl and hydroquinone 467

62 2,2'-bis(4-trimellitimidophenoxy)biphenyl and 2,2'-dihydroxybiphenyl 458

63 2,2'-bis(4-trimellitimidophenoxy)biphenyl and 4,4'-dihydroxybiphenyl 470

64 2,2'-bis(4-trimellitimidophenoxy)biphenyl and bisphenol-A 449

65 2,2'-bis(4-trimellitimidophenoxy)biphenyl and 2,2'-dihydroxy-1,1'-binaphthyl 484

66 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and resorcinol 448

67 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and hydroquinone 452

68 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 4,4'-dihydroxybiphenyl 464

69 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,2'-dihydroxybiphenyl 449

70 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,2'-dimethyl-4,4'-dihydroxybiphenyl 441

71 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and bisphenol-A 433

72 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,7-dihydroxynaphthalene 459

73 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 1,5-dihydroxynaphthalene 455

74 4-p-biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine and 2,2'-dihydroxy-1,1'-binaphthyl 471

75 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and resorcinol 391

76 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and hydroquinone 399

77 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 4,4'-dihydroxybiphenyl 404

78 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 2,2'-dihydroxybiphenyl 403

79 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and bisphenol-A 385

80 N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide and 2,2'-dihydroxy-1,1'-binaphthyl 412

*Data were taken from references 15-25 
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 or  (9)

Mathematical definitions of , , k and  are based

on regression of the observed activities against predicted

activities and vice versa (regression of the predicted activities

against observed activities). The definitions are presented

clearly in Golbraikh et al.33 

Results and Discussion 

Table 1 shows data set for 80 different groups including

poly(amide-imide), poly(ester-imide) and poly(urethane-

imide) of polymers and their thermal decomposition temper-

ature which are taken from Refs. [15-25]. 

The data of Td,10% in Table 1 are divided into a training set

and a validation set. The former includes 50 polymeric (1-

50) Td,10% values; while the latter with 30 polymers (51-80)

data are obtained from the experimental data of Td,10%.

Training set is used to build a QSPR model, which is

evaluated with the validation set. It is impossible to calculate

descriptors directly for an entire molecule because all

polymers have wide distribution of molecular weights and

possess high molecular weights. Molecular descriptors

calculated directly from the structure of the monomers can

be used on the study of QSPR models for polymers, since all

the properties depend on the chemical structure of the

polymer molecule, and all this structure is conditioned by

the monomer structure. 

Stepwise method selects the descriptors step-by-step. The

best 13 selected descriptors among 1497 descriptors were

tabulated in Table 2. They are belongs to different class of

descriptors such as autocorrelation, 3D-MoRSE, topologi-

cal, shape and aromaticity.28 

Molecular descriptors based on the autocorrelation

function ACl, defined as:

 (10)

Where f(x) is any function of variable x and l is the lag

representing an interval of x; a and b defined the total

studied interval of the function. The function f(x) is usually

time-dependent function such as a time dependent electrical

signal, or a spatial-dependent function such as the popu-

lation density in space. Function ACl is a summation of the

function value products calculated at x and x + l. To obtain

spatial autocorrelation molecular descriptors, function f(x) is

any physico-chemical property calculated for each molecule,

such as atomic mass, polarizability, etc. Therefore, the mole-

cule atom represents the set of discrete points in space and

the atomic property evaluated at those points. AC descriptors

can also be calculated for 2D and 3D-spatial molecular

geometry. In 2D case the distribution of a molecular pro-

perty can be a mathematical function f(x, y) for each point.

The most well known autocorrelation descriptors are a)

Moran coefficient (I(d)) and b) Geary coefficient c(d). 

General index of spatial Moarn autocorrelation that, if

applied to a molecular graph, can be defined as:

 (11)

In addition Geary descriptors are defined as:

(12)

Where wi is any atomic property,  is its average value on

the molecule. A is the atom number, d is the considered

topological distance (i.e. the lag in autocorrelation terms), δ ij

is a Kronecker delta (δ ij = 1 if dij = d, zero otherwise), Δ is

the sum of the Kronecker deltas, i.e. the number of vertex

pairs at distance equal to d.28 The Moran coefficient usually

takes a values in the interval [−1, +1]. Positive autocorre-

lation corresponds to positive values of the coefficient
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2
R′0
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Table 2. Selected descriptors by stepwise method

Symbol Definition Class

MATS2e Moran autocorrelation – lag 2 / weighted by atomic Sanderson electronegativities 2D autocorrelations

GATS1v Geary autocorrelation – lag 1 / weighted by atomic van der Waals volumes 2D autocorrelations

GATS8e Geary autocorrelation – lag 8 / weighted by atomic Sanderson electronegativities 2D autocorrelations

HATS5v leverage-weighted autocorrelation of lag 5 / weighted by atomic van der Waals volumes GETAWAY descriptors

MATS8p Moran autocorrelation – lag 8 / weighted by atomic polarizabilities 2D autocorrelations

Mor28u 3D-MoRSE – signal 28 / unweighted 3D-MoRSE descriptors

BEHm2 highest eigenvalue n. 2 of Burden matrix / weighted by atomic masses BCUT descriptors 132

DECC Eccentric topological descriptors

AROM aromaticity (trial) aromaticity indices

Mor19p 3D-MoRSE – signal 19 / weighted by atomic polarizabilities 3D-MoRSE descriptors

PJI2 2D Petitjean shape index topological descriptors

Mor29e 3D-MoRSE – signal 29 / weighted by atomic Sanderson electronegativities 3D-MoRSE descriptors

Mor27m 3D-MoRSE – signal 27 / weighted by atomic masses 3D-MoRSE descriptors
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whereas negative autocorrelation produces negative values.

The Geary coefficient, c(d)28 is a distance type function

varying from zero to infinity. Strong autocorrelation pro-

duces low values of this index; moreover, positive auto-

correlation translates into values between 0, and 1 whereas

negative autocorrelation produce values larger than 1;

therefore the reference “no correlation” is c = 1.

3D-MoRSE descriptors (3D-Molecule Representation of

Structure based on Electron diffraction) are based on the

idea of obtaining information from the 3D atomic coordi-

nates by the transform used in electron diffraction studies for

preparing the practical scattering curves.28 A generalized

scattering function called the molecular transform, can be

used as the functional basis for deriving, from a known

molecular structure, the specific analytic relationship at both

X-ray and electron diffraction. 

Molecular eccentricity (ε): Among the eigenvalue-based

descriptors, molecular eccentricity is a shape descriptor

obtained from the eigenvalues, λ, of the inertia matrix I

defined as follow28: 

   (13)

Where ε = 0 corresponds to spherical top molecules and ε =

1 to linear molecules. 

It is a shape descriptor defined by analogy with the eccen-

tricity of ellipse, which is defined:

 (14)

Where lM and lm are the lengths of the major and minor

elliptical axes, respectively.

BCUT descriptors: defined as eigenvalues of a modified

connectivity matrix, which could be called Burden matrix

B.28 The B matrix is defined as the following: The diagonal

elements Bii are the atomic number Zi of the atoms; the off-

diagonal elements Bij representing two bonded atoms i and j

are equal to π*.10−1 where π* is conventional bond order, i.e.

0.1, 0.2, 0.3 and 0.15 for single, double, triple and aromatic

bond respectively; off-diagonal elements Bij corresponding

to terminal bonds are augmented by 0.01; all other matrix

elements are set a 0.001.

One aim of this work is also studying the effect of number

of descriptors on the some statistical parameters such as

correlation coefficient (R) and F ratio (F). The stepwise

method in SPSS automatically selects descriptors. In each

step, one descriptor is added. In this method 13 descriptors

were selected step by step. Each step usually named as a

model. Figure 1 shows the effect of number of descriptors on

the R and F variations. Increasing the number of descriptors

increases the R and F up to four descriptors. After that, we

see increment of R and decrement of F up to thirteenth

descriptor. It must be noted that after inclusion of fourth

descriptor the variation of R is not significant (the curve is

smooth and has lower slope). Thus we have two regions, one

before fourth descriptors another after it. We named for

simplicity the model which having four descriptors as model

1 and model which having thirteen descriptors as model 2.

Before model 1 we have lower R after that we have lower F.

Thus model 1 which has highest F and lowest number of

descriptors and regional R is the best model. 

The effect of number of descriptors on the correlation

coefficient (R) and F-ratio (F) shown in Figure 1. It is

observed that R is increased due to increasing the number of

descriptors. But, F-ratio increases up to descriptor 4 and then

be decays downward to descriptor 13. The optimum model

is that has higher R, F and smaller number of descriptors.

Thus, in this work we selected two models, one model

including four descriptors (model 1) and other including

thirteen descriptors (model 2).

By carrying out the correlation between the molar thermal

ε = 
λ1

2
λ3

2
–( )

1/2

λ1

--------------------------- 0 ε 1≤ ≤

ε = 
lM
2

lm
2

–( )
1/2

lM
--------------------------

Figure 1. Effect of number of descriptors on the correlation
coefficient (R) and F-ratio. 

Table 3. Coefficient of each descriptor and related error associated
with their mean effects

Model 1

coefficient Std. Error Mean effect Sig.

(Constant) 1314.393 67.220 3.6E-31

MATS2e −460.310 45.976 −0.417 1.81E-15

GATS1v −1061.106 83.345 −0.505 1.99E-20

GATS8e 115.397 13.055 0.323 3.02E-13

HATS5v 988.222 154.175 0.247 1.16E-08

Model 2

coefficient Std. Error Mean effect Sig.

(Constant) 4408.825 523.903 4.79E-12

MATS2e −421.865 40.779 −0.382 1.9E-15

GATS1v −1070.665 91.227 −0.510 8.28E-18

GATS8e 131.712 15.508 0.369 3.48E-12

HATS5v 495.247 148.470 0.124 0.0014

MATS8p −245.815 66.738 −0.167 0.000466

Mor28u 30.794 5.329 0.209 2.23E-07

BEHm2 −502.815 75.351 −0.310 6.15E-09

DECC 17.355 4.058 0.242 6.26E-05

AROM −1045.937 260.139 −0.202 0.000152

Mor19p −18.892 6.882 −0.100 0.007784

PJI2 −136.303 49.755 −0.070 0.007907

Mor29e −14.730 5.978 −0.101 0.016354

Mor27m −16.625 6.917 −0.112 0.019074
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decomposition function Td,10% (in Table 1) with four and

thirteen descriptors using stepwise regression analysis, two

models obtained (Table 3). Table 3 includes coefficients of

two equations for both models. Coefficient of each descriptor,

related mean effect and standard error for them are listed in

the table. Negative coefficient shows the reverse trend of

that descriptor and thermal decomposition temperature. Mean

effect represents the effect of each descriptors on Td,10% 

Present version of Dragon software calculates 1497 de-

scriptors in 18 different classes belong to atomic constitu-

tion, atomic correlation, molecular topology, steric proper-

ties and so on. All of them are physico-chemical properties.

The selected physico-chemical properties meaning defined

in the above by formula. But they may be not popular as well

as molecular weight, volume, polarity and…. Correlation

between Td,10% and these selected descriptors were taken in

Table 3. We can write it as following equation for model 1:

Td,10% = −460.310(MATS2e) − 1061.106(GATS1v) 

+ 115.397(GATS8e) + 988.222(HATS5v) + 1314.393 (15)

These four variables were briefly defined in the Table 2

and discussed with more detailed in the above. Negative and

positive coefficients make decreases and increases Td,10%,

respectively. Td,10% and more customary descriptors have

weak correlation, so that they have not been selected in here.

Also some of reports in the literature used descriptors which

are similar to our descriptors and were not discussed detailed

definition of descriptors.34

Variables in the model 1 and 2, are topological or geo-

metrical. Variables in model 1 are two dimensional descrip-

tors, namely they depend on two variable coordinates such

as x and y or x and z or y and z. While variables in model 2

are two and three dimensional. 

Two dimensional properties may be due to surface depen-

dent properties, such as aromaticity. On the other hand, some

part of our sample molecules have aromatic nature. Thus,

significantly appearance of two dimensional properties may

be due necessity for coplanarity. 

The predicted versus experimental Td,10% values for model

1 and 2 are shown in Figure 2. It is clearly represented that

both model are satisfactory and model 2 has slightly higher

correlation coefficient relative to model 1. But model 1 has

lower higher F and lower number of descriptors. Thus

model 1 is the better model.

The Leave-One-Out (LOO) cross-validation method is

adopted to test the internally predictive ability for Eq. (3) for

two models. The cross-validation Q2
cv;int value for medel 1 is

0.885. Then the model is evaluated externally using the test

set of 30 polymers (in Table 1). The cross-validation Q2
cv;ext

value for the external test set is 0.884. Coefficients of

determination  (predicted versus observed Td,10% values)

and R0 (observed versus predicted Td,10% values) are 0.885

and 0.893, respectively. The slopes of regression lines

through the origin of predicted versus observed k and

observed versus predicted k’ values are 1.013 and 0.986,

respectively. According to Refs. [35-36], a QSPR model is

successful if it satisfied several criteria as follows: (1) Q2
cv;int

> 0.5, Q2
cv;ext > 0.5, R2 > 0.6; (2)  and  close to R2, (R2

R0

2

R0

2
R′0

2

Figure 2. Predicted versus experimental thermal decomposition
temperature (Td,10%) for two models; (a) model 1 including four
descriptors and (b) model 2 including thirteen descriptors. Narrow
and bold tredlines are related to testing and training set,
respectively.

Table 4. Statistical parameters for two models

Statistics Model 1 Model 2

No. of descriptors 4 13

R2 0.894 0.956

F 172.1 125.4

N 80 80

Sig 5.66E-37 3.14E-41

Std. Error 18.6 12.5

Q2 0.900 0.956

Q2
cv,int 0.886 0.956

Q2
cv,ext 0.884 0.931

R0
2 0.893 0.941

(R2
−R0

2)/R2 0.001 0.016

R'0
2 0.893 0.941

(R2-R'0
2)/R2 0.001 0.016

k 1.013 1.011

R2
cv,ext 0.938 0.965

k' 0.986 0.988
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− )/R2 < 1, (R2 − )/R2 < 0.1 (3) k and k' are between

0.85 and 1.15. The cited statistical parameters for models 1

and 2 were listed in Table 4. Thus, in model 1 

Td,10% (pred) = 0.925 Td,10% (exp) + 41.04 n = 80 F = 172

S = 18.6 R2 = 0.894 (16)

And in model 2 

Td,10% (pred) = 0.950 Td,10% (exp) + 28.39 n = 80 F = 125

S = 12.5 R2 = 0.956 (17)

It is obvious that our results satisfy the generally accept

condition. Therefore, the QSPR model obtained in this paper

is suitable for making accurate prediction outside of the

training set of polymers. According to the Sig.-test (see

Table 2), the descriptors appearing in correlation equations

are significant descriptors. The standard errors of estimation

in Eq. (5) for model 1 and 2 are 18.6 K and 12.5, respec-

tively. 

Finally, an overview on the total results, shows that,

increasing the number of descriptors increases the R, but F

up to fourth descriptors then decreases after that descriptor.

Thus, model 1 is optimum model which have lower number

of descriptors and higher F and acceptable R. 

Conclusion

The QSPR is a method in order to prediction of polymer

properties. In this work, a number of descriptors have been

selected among a large number of descriptors. The selected

descriptors were belongs to different class of descriptors

such as: topological, electronic, geometrical and hybrid de-

scriptors. The effect of number of descriptors also was ad-

dressed. On the basis of this effect, two models were pre-

sented. The model which having less number of descriptors,

has lower correlation coefficient, lower cross validation and

higher F-ratio. The optimum model is one which has higher

R, higher F and lower number of descriptors. Thus, It seems

those model which having four descriptors is optimum and

better model. 
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