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We have theoretically studied the nonadiabatic transitions among the five lower states with the Ω=1u symmetry
(1u

(1) to 1u
(5)) in the photodissociation of Cl2, Br2, and I2 by using the spin-orbit configuration interaction (SOCI)

method and the semiclassical time-dependent coupled Schrödinger equations. From the configuration analyses
of the SOCI wavefunctions, we found that the nonadiabatic transition between 1u

(2) and 1u(1) is a noncrossing
type, while that between 1u

(3) and 1u(4) is a crossing type for all the molecules. The behavior of the radial
derivative coupling element between 1u

(1) and 1u(2) and that between 1u
(3) and 1u(4) is analyzed in detail. In Cl2,

nonadiabatic transitions can take place even between the states correlating to different dissociation limits, while
in Br2 and I2, with the usual photon energies e.g. less than 20 eV, nonadiabatic transitions occur only between
the states correlating to the same dissociation limits, reflecting the different magnitudes of the spin-orbit
interactions. 
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Introduction

Diatomic halogen and interhalogen molecules continue to
serve as benchmark systems to study photodissociation
dynamics, with a special interest in relatively large variations
in the spin-orbit (SO) interactions, for example, the SO
splitting of Cl, Br, and I is 881, 3685, and 7603 cm−1,
respectively. Recent experimental activity has been devoted
to the study of the orientation and alignment, namely the mJ

distributions, of the product angular momentum. Details of
the nonadiabatic transition probabilities have been estimated
from such analyses for Cl2

1-4 and Br2.3 
We distinguish in this paper the SO states X(2P3/2) and

X(2P1/2) of a halogen atom as X and X*, respectively, and
label the five Ω = 1u states of a halogen molecule X2 in the
energetic order as 1u

(1) through 1u(5). Our theoretical potential
curves5,6 of the relevant states of Cl2 and Br2 are shown in
Figure 1 and those of I2 in Figure 2. Note the similarities and
differences in their potential curves. 

In a previous paper,6 we evaluated the nonadiabatic
transition probabilities of Cl2 and Br2 by solving the
semiclassical time-dependent coupled Schrödinger equations.
The nonadiabatic transition from 1u

(2) to 1u
(1) is of non-

crossing type and the heavier Br2 behaves more adiabatically
than Cl2, as experimentally observed by Kitsopoulos et al.3

Recent experimental works1-4 have suggested significant
photon energy dependence of this nonadiabatic transition
probability in Cl2, which attracts a theoretical interest. By

contrast, the nonadiabatic transition from 1u
(3) to 1u

(4) is
found as a crossing type and Cl2 behaves more adiabatically
than Br2.6 Since these two nonadiabatic transitions show a
completely opposite trend, it is interesting to analyze further
the corresponding nonadiabatic transitions in I2.

Balasubramanian et al.7 calculated the spectroscopic
properties and potential curves of I2 by the complete active
space SCF method followed by the first-order and second-
order configuration interaction (CI), and relativistic CI
methods. Teichteil and Pelissier8 calculated the potential
curves of I2 with an ab initio relativistic atomic pseudo-
potential method and analyzed the available experimental
data. Nieuwpoort et al.9 employed an all-electron Dirac-
Fock method followed by the CCSD(T) calculations.
However, none of the previous workers has studied the
nonadiabatic transitions in the photodissociation of I2.

In this paper, we calculate the potential curves of I2 by the
spin-orbit configuration interaction (SOCI) method, and
evaluate the radial derivative coupling elements among the
five lower states with the Ω=1u symmetry (1u(1) to 1u

(5)) to
examine the nonadiabatic transition processes and to
compare the results with those of Cl2 and Br2.5,6 It will be
clear that the SO interactions play a very crucial role in the
behavior of these nonadiabatic transitions.

Computational Methods

We used the RECPs by Christiansen et al.10 with the 5s5p
valence shell for I. The associated valence basis functions of
(3s,3p) were used without contraction and augmented by a
set of diffuse s and p (αs = 0.0381, αp = 0.04664) functions.
We added two sets of spherical d-polarization functions (αd

= 0.3724 and 0.19) and a set of spherical f-polarization
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functions (αf = 0.3) and g-polarization functions (αg =
0.415). The basis sets are thus expressed as (4s,4p,2d,1f,1g).

One-electron orbitals for the SOCI calculations must be
chosen with a special care to ensure the correct behavior of
the potential curves at longer internuclear distances R. We
have employed the state-averaged SCF method, in which the
molecular orbitals are optimized for the averaged state of all
the configurations derived from (σg,πu,πg*,σu*) 10, namely 10
electrons in the six orbitals. Here, σg, πu, πg*, and σu* are the
molecular orbitals derived mostly from the 5p atomic
orbitals of I.

For the SOCI calculations, singlet and triplet configuration
state functions (CSF’s) were generated with the reference of
(σg,πu,πg*,σu*)10. All the single and double excitations from
these reference CSF’s were included in the second-order CI
scheme. We carried out the “contracted SOCI” method
where the total Hamiltonian including the SO part was

diagonalized in the basis of the 16 “spin-free” (SF) CI
eigenstates of 3 × , 1Πux, 1Πgx, , 1∆g, 3 × , 3Πux,
3Πgx, 3Πuy, 3Πgy, , and 3∆u, all of which correlate with the
atomic dissociation limits of I(2P) + I(2P). Here, SF stands
for the calculations without the SO interactions. The
accuracy of this contracted SOCI method for various iodine
containing molecules has been assessed before,11,12 and an
error due to the contraction was found to be at most 0.03 eV
in excitation energies. The Davidson correction was
included in the CI energy. For Cl2 and Br2, we used the
results reported in our previous works.2,5,6 All the SOCI
calculations were performed with the COLUMBUS pro-
gram package13 with the spin-dependent GUGA.14,15

Σ1 +
g Σ1 −

u Σ3 +
u

Σ3 −
g

Figure 1. (a) Adiabatic potential curves of Cl2 obtained from the
contracted spin-orbit CI calculation. Numbers (pqrs) denote the
dominant electronic configuration (σg

pπu
qπg* rσu* s) in the Franck-

Condon region. (b) Those of Br2.

Figure 2. Adiabatic potential curves of I2 obtained from the
contracted spin-orbit CI calculation.

Table 1. Calculated and experimental spectroscopic constants16,17

for the X 1Σ+
g, A 3Π1u, and B 3Π0+u states of Br2

Re (bohr) De (eV) ωe (cm−1) ωexe (cm−1)

X 1Σ+
g  This work 4.340 1.881 319.9 1.10

 Experiment 4.310 1.971 325.3 1.08
A 3Π1u  This work 5.153 0.2077 142.3 2.76

 Experiment 5.083 0.2568 153 2.7
B 3Π0+u  This work 5.098 0.4131 160.2 1.88

 Experiment 5.060 0.4660 167.6 1.64

Table 2. Calculated and experimental spectroscopic constants16,17

for the X 1Σ+
g, A 3Π1u, and B 3Π0+u states of I2

Re (bohr) De (eV) ωe (cm−1) ωexe (cm−1)

X 1Σ+
g  This work 5.099 1.431 208.9 0.57

 Experiment 5.038 1.543 214.5 0.61
A 3Π1u  This work 6.002 0.1415 80.44 2.02

 Experiment 5.885 0.2033 92.9 1.57
B 3Π0+u  This work 5.815 0.4386 115.5 0.90

 Experiment 5.715 0.5304 125.7 0.76
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Results and Discussion

Spectroscopic constants and potential curves of Br2

and I2.  The calculated potential curves of I2 are shown in
Figure 2. Spectroscopic constants of the X 1Σ+

g, A 3Π1u, and
B 3Π0+u states of Br2 and I2 are shown in Table 1 and Table 2,
respectively, and are in reasonable agreement with the
experimental results.16,17 

In Figure 2, 1u(3) and 1u(4) for I2 exhibit an avoided crossing
at around R= 6.6 bohr. This is due to the configuration
switching between the dominant  (1441) and 
(2332) configurations, where (pqrs) stands for the electronic
configuration of σg

pπu
qπg* rσu* s. The corresponding configu-

ration switching takes place also in Cl2 and Br2, though their
avoided crossing behavior is invisible in Figure 1, and that in
Cl2 was overlooked inadvertently and treated as a non-
crossing type in a previous work.2 This avoided crossing
persists in the absence of the SO interactions and will play
an important role in the nonadiabatic transition from 1u

(3) to
1u

(4), as discussed later.
In the Franck-Condon (FC) region of I2, 1u

(4) has the

dominant configuration of  (2332) and 1u
(5) has the one

of 3∆1u (2332) as shown in Figure 2. The same feature was
observed for Br2.6 On the other hand, for Cl2, 1u

(4) is
dominated by 3∆1u (2332) and 1u(5) is by  (2332),2,5 and
these dominant configurations were exchanged at around R
= 3.84 bohr just outside the equilibrium distance Re = 3.811
bohr,2,5 as discussed in the next section.

Behavior of electronic wavefunctions and the radial
derivative coupling elements. In the contracted SOCI
method, the electronic wavefunction for  is expanded in
terms of the five SFCI eigenstates, namely, 3Πu(2431),
1Πu(2431), (1441), (2332), and 3∆u(2332) in the FC
region, as follows: 

 (1)

where αi,m are the R-dependent expansion coefficients
obtained by diagonalizing the total Hamiltonian including
the SO part in the subspace of the above five SF states

. For each state , the symbol  with the

Σ3 +
1u Σ3 +

1u

Σ3 +
1u

Σ3 +
1u

lu
m( )

Σ3 +
u Σ3 +

u

lu
m( )| 〉 =  

i 1=

5

∑ αi ,m Λ
2Si 1+

i| 〉

Λ2Si 1+
i| 〉 l u

m( ) Λ2Si 1+
i

Figure 3. Variations of the weights of the five LS configurations to expand the adiabatic states 1u
(1) and 1u(2). The upper is for Cl2, the middle

is for Br2, and the bottom is for I2.
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dominant αi,m value in the FC region is used as the state label
in Figures 1 and 2.

The radial derivative coupling elements gmn can be
calculated directly with the CI vectors in the contracted
SOCI calculation as follows:

 (2) 

where ck,m is the kth element in the mth CI vector in the CSF
basis. The step size ∆R in the numerical differentiation was
4.0× 10−4 bohr as before.5 The so-called molecular orbital
derivative term was neglected because its contribution is
usually small and to the extent of 10-15% at most.18 This
approximation is especially good in this study because the
active molecular orbitals σg, πu, πg*, and σu* belong to
distinct symmetries and they are derived mostly from 5p
atomic orbitals and hardly change at important longer R.
Substituting Eq. (1) into Eq. (2), we have, 

+ 

 

(3)

The second term in Eq. (3) has no contribution unless Si = Sj,
Λi = Λj, and  (the last condition comes from the anti-
symmetric nature of the derivative coupling elements) and
therefore has a contribution only from 

. This matrix element has a non-negligible contribution,
since even in the SFCI problem, the first and second 
SFCI eigenstates exhibit an avoided crossing at a longer R,
where the significant configuration mixings take place
between the  (1441) and  (2332) configurations, as
follows:

gmn = lu
m( ) d

dR
------- lu

n( )〈 〉 ck,m
k

∑ R( )
ck,n R ∆R+( ) ck,n R( )–

∆R
------------------------------------------------------≈

gmn =  
i j, 1=

5

∑ αi ,m

dαj ,n

dR
------------ Λ

2Si 1+

i Λ
2Sj 1+

j〈 | 〉

 
i j, 1=

5

∑ αi ,mαj ,n Λ
2Si 1+

i
d

dR
------- Λ

2Sj 1+

j〈 〉

=   
i 1=

5

∑ αi ,m

dαi ,n

dR
------------ +  

i j, 1=

5

∑ αi ,mαj ,n Λ
2Si 1+

i
d

dR
------- Λ

2Sj 1+

j〈 〉

i j≠

1st Σ3 +
u d/dR 2nd〈

Σ3 +
u〉
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u

Σ3 +
u Σ3 +

u

Figure 4. Variations of the weights of the five LS configurations to expand the adiabatic states 1u
(3) and 1u(4). The upper is for Cl2, the middle

is for Br2, and the bottom is for I2.
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(4)

Here, θ is the R-dependent unitary transformation angle.
Because such mixed SFCI eigenstates are not useful as the
bases to characterize the SOCI wavefunctions, we back-
transform the above Eq. (4) to define the “diabatic” bases,

 and , and use them as the bases in
Eq. (1), along with the three other SF bases. As we will
explain later, the second term in Eq. (3) can be negligible in
these bases, and the general behavior of the coupling
elements can be understood only by the R dependence of the
expansion coefficients . In this sense, these five bases
play a role of the quasi-diabatic bases. 

Figure 3 shows the R dependence of the squared values of
 for m= 1, 2, namely for 1u(1) and 1u(2), while Figure 4

shows that for 1u(3) and 1u(4). Another way to see the R
dependence of the SOCI wavefunctions is projecting the
wavefunctions onto those at the dissociation limits. Such
results for 1u(1) and 1u(2) are shown in Figure 5, and those for

1u
(3) and 1u(4) in Figure 6. Note that the calculated Re is 3.811

bohr2,5 for Cl2, 4.340 bohr for Br2, and 5.099 bohr for I2. 
In Figures 3 and 4, one can easily observe that, in the FC

region of Cl2, each SOCI wavefunction can be represented
very well only by the dominant SF component, namely the
LS-coupling scheme is extremely good, while in the FC
region of I2, strong SO configuration mixings, namely a
partial jj -coupled behavior can be seen due to the large SO
interactions. Looking at the asymptotic regions, for each
SOCI wavefunction for , the expansion coefficients 
show similar behavior and in fact converge to the same
limiting values, which are exclusively determined by the
angular momentum coupling of the two open-shell halogen
atoms, and are therefore independent of the halogen
atoms.19,20 From Figure 3 and also from Figure 5, the
electronic wavefunctions for 1u

(1) and 1u(2), both converging
to the X+X dissociation limits (see Figures 1 and 2) show a
noncrossing-type nonadiabatic behavior. Taking into account
the slower LS-to-jj  transitions for heavier molecules as seen
especially in Figure 5, we can expect more adiabatic
behavior, namely smaller magnitude of g12 for I2.

1st Σ3 +
u| 〉 = cosθ Σ3 +

u 1441( )| 〉⋅ − sinθ Σ3 +
u 2332( )| 〉⋅

2nd Σ3 +
u| 〉 = sinθ Σ3 +

u 1441( )| 〉⋅ + cosθ Σ3 +
u 2332( )| 〉⋅

Σ3 +
u 1441( )| 〉 Σ3 +

u 2332( )| 〉

αi ,m

αi ,m

l u
m( ) αi ,m

Figure 5. Variations of the weights of the five jj-components to expand the adiabatic states 1u
(1) and 1u(2). The upper is for Cl2, the middle is

for Br2, and the bottom is for I2. 
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On the other hand, Figures 4 and 6 show that the SOCI
wavefunctions for 1u(3) and 1u(4) exhibit a crossing-type
nonadiabatic behavior, and the crossing between  (1441)
and  (2332) takes place more sharply in the order of Cl2,
Br2, and I2, suggesting the increase of the magnitude of g34 in
this order.

In Figure 4, the electronic wavefunction for 1u
(4) of Cl2

shows a clear crossing behavior between the 3∆u (2332) and
(2332) configurations at around R= 3.84 bohr just

outside Re = 3.811 bohr.2,5 This crossing is very sharp
because these two configurations have no direct interaction
due to the selection rule of the SO Hamiltonian.21 

Figure 7 shows the R dependence of the radial derivative
coupling elements gmn of I2. They exhibit some similarities
to Cl2 and Br2.5,6 As will be seen in Eq. (7) later, these
elements are essential for the discussion on the nonadiabatic
transitions.

The coupling elements g12 and g34 between the two states
correlating to the same dissociation limits, show the strong
dependence on the halogen atoms, as seen from their
absolute peak values  shown in the diagonal blocks in
Table 3. As suggested before, the  value decreases
slowly as the molecule changes from Cl2 through I2, while
the  value increases dramatically. The behavior of gmn is
largely determined by the balance between the exchange
interactions and the SO interactions. The former interactions
originate from the Coulombic interactions and represent the

Σ3 +
u

Σ3 +
u

Σ3 +
u

gmn
max

g12
max

g34
max

Figure 6. Variations of the weights of the five jj-components to expand the adiabatic states 1u
(3) and 1u(4). The upper is for Cl2, the middle is

for Br2, and the bottom is for I2. 

Figure 7. R dependence of radial derivative coupling elements gij

for I2 between states i and j. Note similarities6 in Cl2, Br2, and I2.
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spatial overlap of the valence atomic orbitals, and the latter
ones reflect the heaviness of the halogen atoms.

For examining their dependence on the exchange and SO
interactions separately, we calculated  and  for the
artificial molecules by exchanging the SO potentials22,23 for
Cl2 and Br2. It should be noted that in the RECP method,22

the exchange of the SO potentials for the valence electrons
can readily be carried out. The results are summarized in the
off-diagonal blocks in Tables 3(a) for  and 3(b) for

, respectively. The use of the same SO potentials and
the change of the Coulombic potentials from Cl2 to Br2
decreases both  and . The magnitude of the
exchange interaction, J, between the two atomic orbitals
behaves as . Since Br2 has more diffuse valence
orbitals, namely has a smaller α than Cl2, the exchange
interaction for Br2 decreases more slowly as R increases. In
the simple Rosen-Zener-Demkov model, which the
nonadiabatic behavior between the states 1u

(1) and 1u(2)

approximately follows,2 the peak value is expressed as
, which is independent of the splitting energy ∆

at  (see Eq. (1) in ref 5). Therefore, the larger atomic
orbitals yield smaller peak values, as observed in Tables 3(a)
and 3(b).

If we use the same Coulombic potentials but change the
SO potentials22,23 from Cl2 to Br2,  decreases while

 increases. As we have discussed before, slower LS-to-jj
transitions for heavier molecules result in smaller 
values. This is true since the nonadiabatic interaction
between 1u(1) and 1u(2) is a non-crossing type. 

On the other hand, the nonadiabatic interaction between

1u
(3) and 1u(4) is a crossing type, as stated before. We first

examine the behavior of g34 without the SO interactions. In
this case, the corresponding SF adiabatic states are the

 and  states in Eq. (4), which are
expressed in terms of the diabatic bases (1441) and 
(2332). Now, by treating the unitary transformation
coefficients, cosθ and sinθ, as the expansion coefficients

 in Eq. (1), g34 in this SF case can be written from Eq.
(3) as follows:

  (5)

Here, the first term is dominating and the second term has
only a negligible contribution (less than 3%), since the latter
is the radial derivative coupling element in the diabatic
states. Table 3(b) shows that the SF calculations of Cl2, Br2,
and I2 yield almost the same  values, while Rmax, where
the coupling element has a peak value, increases in the order
of Cl2, Br2, and I2, reflecting the size of the valence atomic
orbitals. 

This Table 3(b) also shows that the inclusion of the SO
interactions increases  dramatically in this order, while
their Rmax values are about the same. This suggests that the
difference in the behavior of  comes from the SO
interactions, and not from the Coulombic interactions. The
wavefunction analyses in Figures 4 and 6 show that the
switching of these dominant configurations takes place more
sharply in this order around each crossing distance Rmax. An
illuminating point is, as seen in Figure 4, this configuration
switching is assisted by the presence of other SF states, such
as 3∆u and 1Πu, both of which have second order SO
interactions with these two  states. Note also that the first
order SO interaction between the diabatic states (1441)
and (2332) is zero due to the selection rule of the SO
Hamiltonian.21 As seen in Figures 4 and 6, these wave-
functions of heavier molecules tend to shift to the jj-coupled
characters, namely those at the dissociation limits, more
quickly around the crossing regions. This is consistent with
the dramatic increase in  as the magnitude of the SO
potentials increases, as shown in Table 3(b).

From these analyses, the  value decreases in the order
of Cl2, Br2, and I2 because of the additive contributions of the
slower variations in the exchange interactions and the slower
LS-to-jj  transitions for the heavier systems. As for ,
however, I2 has the largest value because it exhibits sharper
LS-to-jj  transition at the crossing region, which is not
overwhelmed by a relatively smaller contribution of the
exchange interactions to reduce .

Numerical estimates of nonadiabatic transition prob-
abilities. In the semiclassical theory, the total wavefunction

 satisfies the following time-dependent
Schrödinger equation,19,24

(6)

g12
max g34

max

g12
max

g34
max

g12
max

g34
max

J Ae
αR–≈

g
max

 = α/4
R ∞=

g12
max

g34
max

g12
max

1st Σ3 +
u| 〉 2nd Σ3 +

u| 〉
Σ3 +

u Σ3 +
u

αi ,m

g34
SF = Ψ3

SF d
dR
------- Ψ4

SF〈 〉  = 
dθ
dR
------- + Σ3 +

u 1441( ) d
dR
------- Σ3 +

u 2332( )〈 〉

g34
max

g34
max

g34
max

Σ3 +
u

Σ3 +
u

Σ3 +
u

g34
max

g12
max

g34
max

g34
max

Ψe R t( ),r( )

ih
∂Ψe R t( ),r( )

∂t
------------------------------ = He R t( ),r( )[ ]Ψe R t( ),r( )

Table 3. Absolute peak values of the radial derivative coupling
elements  and their peak distances Rmax

a

(a) Between 1u(1) and 1u(2)

 Spin-orbit potentials
Coulombic potentials  SF Cl2  Br2  I2

Cl2 (bohr−1)  0.0   0.223 0.180
Rmax (bohr)  7.7 7.2

Br2 (bohr−1)  0.0  0.188 0.160
Rmax (bohr)  8.7 8.0

I2 (bohr−1)  0.0  0.102
Rmax (bohr)  8.8

(b) Between 1u(3) and 1u(4)

 Spin-orbit potentials
Coulombic potentials  SF  Cl2  Br2  I2

Cl2 (bohr−1) 0.316  0.440  1.174
Rmax (bohr) 5.9  6.2  5.7

Br2 (bohr−1) 0.338  0.347  0.920
Rmax (bohr) 6.4  6.4  6.3

I2 (bohr−1) 0.328  1.571
Rmax (bohr) 7.1  6.6

aThe diagonal blocks, namely the results obtained by the Coulombic
potential and spin-orbit potential for the same atoms, denote the actual
values for Cl2, Br2, and I2, and the off-diagonal blocks show the results
for the artificial molecules obtained by the combination of the specified
Coulombic and spin-orbit potentials.22,23 The column of SF (spin-free)
stands for the results without the spin-orbit interactions.

gij
max

g12
max

g12
max

g12
max

g34
max

g34
max

g34
max
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where He is the electronic Hamiltonian including the SO
interactions, r  is the electronic coordinate, and R(t) is the
internuclear distance, and the molecular rotation is not
considered in this work. If Ψe is expanded in terms of the
adiabatic wavefunctions, 1u

(1) through 1u
(5), the expansion

coefficients Cn(t) satisfy a set of the first-order coupled
equations, 19,24

 (7)

where Ek are the adiabatic eigenvalues of He, namely the
SOCI energies, v is the relative nuclear velocity, gkn are the
radial derivative coupling elements between 1u

(k) and 1u
(n)

defined in Eq. (2), and  stands for the probability to
find the system in the adiabatic state 1u

(n). Here, the relative
nuclear motion is described by the classical equation of
motions.

 (8)

where µ is the reduced mass and Ei(R) is the adiabatic
potential energy on which the photodissociation takes place.

Use of the so-called “mean-field potential” 

instead of Ei(R) in Eq. (8) had negligible effects in the
nonadiabatic transition probabilities, typically less than 1%.

 General behavior of the state populations for Cl2 and Br2
was described before.6 Figure 8(a) shows the probabilities of

I2 after the vertical excitation to the B'' 1Πu (1u
(2)) state. Only

the nonadiabatic transition from 1u
(2) to 1u

(1) is observed as in
Br2. This transition probability decreases in the order of Cl2,
Br2, and I2. The transition probabilities to the remaining
states were negligible, and in the order of 10−10 or less. Note
that Cl2 exhibits a small amount of nonadiabatic transition to
1u

(3), which can be approximated by the Rosen-Zener-
Demkov model2,5,6 but the corresponding transition does not
occur in I2. 

Figure 8(b) shows the probabilities of I2 after the vertical
excitation to the C  (1441) (1u

(3)) state. Only the
nonadiabatic transition from 1u

(3) to 1u
(4) was observed as in

Br2. This transition probability increases in the order of Cl2,
Br2, and I2. The transition probabilities to the remaining
states were negligible, and in the order of 10−9 or less. Note
that in the case of Cl2, the transition to 1u(5) was also found.6 

The above-mentioned behavior can be understood mostly
from the magnitudes as well as the R dependence of gmn and
the adiabatic energy difference in the transition regions, the
last of which is closely related to the atomic SO splittings.
For Cl2 with a smaller SO splitting, nonadiabatic transitions
can occur even between the states correlating to different
dissociation limits. For Br2 and I2, because of their larger SO
splittings, nonadiabatic transitions do not take place between
the states correlating to different dissociation limits, but
occur only between the states correlating to the same
dissociation limits. In the latter case, the magnitudes of gmn

determine the nonadiabatic transition probabilities. Since
 decreases in the order of Cl2, Br2, and I2, the transition

probability from 1u(2) to 1u
(1) also decreases in this order. On

the other hand, the transition probability from 1u
(3) to 1u

(4)

increases in this order, reflecting the dramatic increase of
. All these results are consistent with our previous

analyses5,6 and support our interpretation of the nonadiabatic
transition mechanism. 

For examining the characteristics of these nonadiabatic
transitions with higher photon energies, we calculated the
transition probabilities at a high energy limit with the initial
condition that the molecules dissociate with a very large
velocity, v ~1000 a.u at R= Re. The state populations derived
from the vertical excitation to the 1Πu (1u

(2)) states and those

ih
dCk t( )

dt
---------------- =  

n
∑ Ekδkn ihvgkn–[ ]Cn t( )

Cn t( ) 2

µd2R t( )
dt2

---------------- = −
∂Ei R( )

∂R
-----------------

 
i 1=

5

∑ Ci t( ) 2 Ei R( )

Σ3 +
1u

g12
max

g34
max

Figure 8. (a) Semiclassical probabilities from the vertical
excitation to the B'' 1Πu (1u

(2)) state of I2. (b) Similar probabilities
from the vertical excitation to the C3Σ+

1u (1441) (1u(3)) state of I2.

Table 4. (a) Semiclassical probabilities derived from the vertical
excitation to the 1Πu (1u

(2)) states of Cl2, Br2, and I2 at the high
energy limit. (b) Similar probabilities derived from the vertical
excitation to the3Σ+

1u (1441) (1u(3)) states

(a) From the initial excitation to the 1Πu (1u
(2)) state

|C1|2 |C2|2  |C3|2 |C4|2  |C5|2

Cl2 0.293 0.271 0.200 6.34× 10−4 0.234
Br2 0.194 0.415 0.141 6.65× 10−3 0.243
I2 0.104 0.644 6.30× 10−2 1.05× 10−2 0.178

(b) From the initial excitation to the3Σ+
1u (1441) (1u(3)) state

|C1|2 |C2|2 |C3|2 |C4|2  |C5|2

Cl2 8.00× 10−4 0.418 0.145 0.317 0.119
Br2 5.15× 10−4 0.349 0.158 0.339 0.154
I2 1.98× 10−4 0.200 0.215 0.400 0.186
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to the (1441) (1u(3)) states are summarized in Tables
4(a) and 4(b), respectively. At this high energy limit, the
nonadiabatic transitions can take place between the states
correlating to the different dissociation limits even in Br2 and
I2. However, by calculating the probabilities further with
various kinetic energies, it becomes clear that such
transitions do not occur at the wavelengths usually used in
photochemical experiments, namely hν = 10-20 eV.

It is interesting to note that at this high energy limit,
namely the diabatic or sudden limit, the final amplitude for
each of the atomic state is obtained by projecting the atomic
dissociation states on the molecular wavefunction at the FC
region.25 Therefore, the transition probabilities are simply
evaluated from the squared overlap between the wavefunc-
tions at R = Re and those at the dissociation limits, namely
those at R = Re in Figures 5 and 6. Note the calculated Re is
3.811 bohr2,5 for Cl2, 4.340 bohr for Br2, and 5.099 bohr for
I2. For example, the state populations derived from the
vertical excitation to 1Πu (1u

(2)) in Table 4(a) coincide with
the configuration weights of the electronic wavefunction
1u

(2) at R = Re shown in Figure 5. Those from the vertical
excitation to (1441) (1u(3)) in Table 4(b) are also in good
accord with the configuration weights of 1u

(3) at R = Re

shown in Figure 6. 
Before concluding the present work, comparison with

recent experimental results is in order. As discussed before,6

our theoretical transition probabilities are in reasonable
agreement with recent experiments for both transitions, from
1u

(2) to 1u
(1) and from 1u(3) to 1u

(4), though there is no available
experiment for I2. For the former transition in Cl2, Brouard et
al.4 recently pointed out that the available experimental
transition probability1-4 decreases as the wavelength decreases,
that is counterintuitive from a theoretical viewpoint. Our
theoretical transition probability shows a very weak wave-
length dependence in the opposite and normal direction, e.g.
0.25 at λ = 355 nm and 0.26 at λ = 308 nm. Although this
theoretical value at λ = 308 nm is in good agreement with
their experimental value of 0.23, careful analyses would be
required in both theory and experiment. We suggest more
detailed experiments including F2 and I2.

Conclusion

We calculated the ground and lower-lying excited states of
I2 by the spin-orbit configuration interaction (SOCI) method,
and examined the nonadiabatic dissociation processes that
cause the SO branchings of the products, and compared the
results to those of Cl2 and Br2. 

From the configuration analyses, it was found that the
nonadiabatic transition between 1u

(2) and 1u(1) is a non-
crossing type, while that between 1u

(3) and 1u(4) is a crossing
type for all the three molecules. Variations of the peak values
of the radial derivative coupling element between 1u

(1) and
1u

(2) and that between 1u
(3) and 1u(4) can be interpreted by the

balance of the Coulombic and SO interactions.
The nonadiabatic transition probabilities were evaluated

by the semiclassical theory. In I2 with the larger SO splitting,

the nonadiabatic transitions take place only between the
states correlating to the same dissociation limits, as in Br2.
At the high energy limit, the calculated transition prob-
abilities were in good accord with the squared overlap
between the wavefunctions at R= Re and those at the
dissociation limits. 

For further details, it is necessary to use a more rigorous
quantum-mechanical method including the rotational
nonadiabatic transitions between asymptotically degenerate
states. Such work is now in progress in our laboratory.
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