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The BH5 molecule, which is suggested as an intermediate of the acidolysis of BH4
−, contains a weak two-

electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure
correctly. The structures and energies of BH5 and the transition state for the hydrogen scrambling have been
studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The
dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/
TZ(3d1f1g,2p1d) level. We have also calculated the potential energy curves for the dissociation of BH5 to BH3

and H2. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods
give very good potential energy curves and requires much less computing resources than the CCSD(T)/
TZ(3d1f1g,2p1d) level. The potential energy of the BH5 scrambling has been obtained by the multiconfiguration
molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state
theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × 109 s−1, and
tunneling is very important.
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Introduction

The existence of BH5 was postulated on the basis of
experimental observations of the acidolysis of BH4

− in
aqueous solution.1

H+ + BH4
− + 2H2Oç 4H2 + B(OH)3

In acidic H2O, BH4
− accepts a proton to form BH5, which is

dissociated into BH3 and H2.

H+  +BH4
− ç BH5ç BH3 + H2

The first step is slow and the dissociation is known to be
very fast. In D2O, mostly HD molecules are formed from the
same mechanism as above, but a small amount of H2 is also
detected. In basic D2O, the unreacted BH4− turned into, first
BH3D−, then BH2D2

−, etc.2 Pitzer et al. have reported that
B2D6 was obtained by shaking B2H6 with D2 at room
temperature.3 The possible mechanism is as following.

B2H6é 2BH3 + D2é [BH3-D2]é [BH2D-HD]
é BH2D + HD

These observations suggest the existence of BH5 and the
scrambling of hydrogens. Later, BH5 has been detected
spectroscopically in a low temperature matrix.4 

Schreiner et al. have performed extensive ab initio
calculations for the BH5 systems.5 They found that geometry
and energy of BH5 depend very much on the level of theory
and the size of basis sets. The HF level of theory is
inadequate for BH5, and even CCSD(T) level with the DZP
basis sets cannot predict the structure of BH5 correctly. BH5

should be considered as a molecule with chemical bonds
between BH3 and H2.5 This is a weak 2-electron-3-center
bond, and the correct description for the bond dissociation

can be a critical test for theory. Based on the comparison
between the dissociation energy of BH5 into BH3 and H2 and
the barrier height for the scrambling, Schreiner et al. have
concluded that the hydrogen scrambling is not likely. They
have also pointed out the possibility of large tunneling effect.
Therefore it is necessary to calculate the scrambling rate and
the role of tunneling to explain the experimental observations
correctly.

Since the reliable ab initio calculations for BH5 require
very high levels of electron correlation with large basis sets,
it is almost impractical to generate good potential energy
surface for the rate calculation. We have used recently
developed multi-coefficient corrected quantum mechanical
methods (MCCM) and the multi-configuration molecular
mechanics method (MCMM) to generate potential energy
surface, and calculated rates using the variational transition
state theory including multidimensional tunneling approxi-
mations.

Computational Methods

All electronic structure calculations were performed with
the Gaussian 98 program packages.6 Initial geometries for
BH5 complex were fully optimized at the QCISD level of
theory with the TZ2P basis sets, and then the structures of
BH5 complex were partially optimized by fixing the distance
between Boron and the center of H2 along the dissociation
coordinate of BH5 to BH3 and H2. The MCCM potential
energy curves were calculated using these partially optimized
structures. The full geometry optimization was also performed,
and frequencies and zero-point energies for H2, BH3, and
BH5 were obtained using the optimized structures. The
structures optimized at the QCISD/TZ2P level has been used
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for the potential energy curve at the G3 level. Although we
followed the G3 procedures, it is not the real G3, since the
G3 level uses the MP2/6-31G(d) method for the geometry
optimization. Therefore we will denote it as G3//QCISD/
TZ2P. For the potential energy curve for BH5 dissociation,
the single-point MCCM calculations were performed using
the structures partially optimized at the QCISD/TZ2P level.
So these calculations are denoted as MCCM//QCISD/TZ2P.

All of the multi-coefficient correlated quantum mechanical
methods have been described elsewhere in detail;7-11

therefore, only a short description of each method employed
will be given here. Since all of these methods involve
differences between energies at different basis sets and
theory levels, a short notation has been used in order to write
the equation for a multilevel energy succinctly. In this
notation, the pipe“ |”  is used to represent the energy
difference either between two one-electron basis sets B1 and
B2 or between two levels of electronic structure theory L1
and L2, e.g., Møller-Plesset second-order perturbation theory
and Hartree-Fock theory. The energy difference between two
basis sets is represented as 

∆E(L/B2|B1) = E(L/B2) − E(L/B1) (1)

where L is a particular electronic structure method, and B1 is
smaller than B2. The energy change that occurs upon
improving the treatment of the correlation energy is represented
by

∆E(L2|L1/B) = E(L2/B) − E(L1/B) (2)

where L1 is a lower level of theory than L2, and B is a
common one-electron basis set. Finally, the change in energy
increment due to increasing the level of the treatment of the
correlation energy with one basis set as compared to the
increment obtained with a smaller basis set is represented as

∆E(L2|L1/B2|B1)
= E(L2/B2) − E(L1/B2) − [E(L2/B1) − E(L1/B1)] (3)

The Utah variant of MCCM (MCCM-UT-L) methods are
written as

E(MCCM-UT-L) = c1E(HF/cc-pVDZ)
+ c2∆E(HF/cc-pVTZ|cc-pVDZ)
+ c3∆E(MP2|HF/cc-pVDZ)
+ c4∆E(MP2|HF/cc-pVTZ|cc-pVDZ) 
+ c5∆E(L|MP2/cc-pVDZ) + ESO + ECC (4)

where L is either MP4SDQ or CCSD. Equations for the
electronic energies for the multi-coefficient Gaussian-3
(MCG3)9 and the multi-coefficient QCISD (MC-QCISD)11

methods are given below.

E(MCG3)=c1E(HF/6-31G(d))
+ c2∆E(HF/MG3|6-31G(d))
+ c3∆E(MP2|HF/6-31G(d))
+ c4∆E(MP2|HF/MG3|6-31G(d)) 
+ c5∆E(MP4SDQ|MP2/6-31G(d)) 
+ c6∆E(MP4SDQ|MP2/6-31G(2df,p)|6-31G(d)) 
+ c7∆E(MP4|MP4SDQ/6-31G(d))

+ c8∆E(QCISD(T)|MP4/6-31G(d)) + ESO + ECC (5)

E(MC-QCISD) = c1E(HF/6-31G(d))
+ c2∆E(MP2|HF/6-31G(d))
+ c3∆E(MP2/MG3|6-31G(d))
+ c4∆E(QCISD|MP2/6-31G(d)) (6)

The MG3 (modified G3) basis set denotes the G3large basis
set without the core polarization functions.12 Each of these
methods assigns coefficients to each energy difference involved
in the linear combination; the coefficients have been optimized
to fit the atomization energies of 82 molecules containing
first-and-second-row elements.13 In the MCCM-UT, MC-
QCISD, and MCG3 methods, the basis set deficiency has
been corrected by the linear combination of the energy
difference with optimized coefficients.

The multilevel structure, energy, and Hessian are calculated
by using the MULTILEVEL  2.1.1 program.14 This program
uses the GAUSSIAN 98 package to obtain the energy, gradient,
and Hessian components and then combines the components
to calculate the multilevel energy, gradient, and Hessian.
Frequencies were calculated from the Hessian. Single-level
Hessians were used with the NewtonRaphson step. In most
cases, an HF/6-31G(d,p) Hessian was recalculated every
three steps, and this matrix was used in the determination of
every Newton-Raphson step for all MULTILEVEL  optimizations.

Details of the multiconfiguration molecular mechanics
(MCMM) algorithm have been described elsewhere in detail;15

therefore, only a brief description of each method employed
will be given here. In the MCMM formalism, the reactive
system can be defined by using several valence bond
configurations or, more generally, diabatic configurations
corresponding to each of the minima on the potential energy
surface. Each configuration can be described by a molecular
mechanics potential, V11(q) and V22(q), which is correct in
the vicinity of the well. For a geometry q far from the
minima the energy can be expressed in terms of the two
diabatic configurations by solving the secular equation:

(7)

where the term V12(q) is called the resonance energy
function or resonance integral, and V denotes the lowest-
energy eigenvalue of V. The element Vij of the matrix V may
be considered to be the representation of the electronic
Hamiltonian (including nuclear repulsion) in an electronically
diabatic basis, and the eigenvalue V is the expectation value
of the electronic Hamiltonian (including nuclear repulsion)
for the lowest-energy electronically adiabatic state. This
eigenvalue is given by

(8)

the components of its gradient are given by

V11 V– V12

V12 V22 V–
0=

V q( ) 1
2
---{ V11 q( ) V22 q( )+( )=

V11 q( ) V22 q( )–( )2
4V12 q( )+[ ]

1 2⁄
},–
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(9)

and the elements of its Hessian are given by

(10)

Note that V tends to the energy V11 of configuration 1
(reactants) or the energy V22 of configuration 2 (products)
whenever the value of the resonance integral is negligible.
The critical issue in the MCMM formulation is the calculation
of that resonance integral and its derivatives, since the V11

and V22 terms and their derivatives are extracted from the
molecular mechanics force field. Note that V11 is generated
using the connectivity (valence structure) of reactants, and
V22 is generated using the connectivity of products.

From Eq. (7), V12(q) can be expressed as:

V12(q)2 = [V11(q) − V(q)][ V22(q) − V(q)] (11)

Near the arbitrary geometry q(k), each quantity on the right
hand side of Eq. (11) can be expanded in Taylor’s series.
Thus,

(12)

where

(13)

and V(k), g(k), and f (k) are the target energy, gradient, and
Hessian matrix respectively of the reference point (note that

if the reference geometry corresponds to a saddle point or
local minimum (well) on the potential energy hypersurface,
g(k) is zero). Furthermore we expand the diagonal elements
of Vnn around the geometry q(k):

(14)

where

 (15)

for n = 1,2. Note that the quantities with superscript (k) are
constants evaluated at the geometry q(k) of each reference
point, k, and therefore are independent of q. The quantities
Vnn defined in Eq. (14) and V12(q;k) and its derivatives are
functions dependent on the geometry, q, as well as on the
geometry of the reference point k. Substituting Eqs. (12) and
(14) into (11), we obtain the following general form of the
V12 term:

(16)

Equation 16 provides an analytic expression for evaluating
the resonance integral in the vicinity of a reference point.
However, when dealing with a nuclear configuration far
from the reference point k, the value V12(q;k) given by Eq.
(16) is unbounded either positive or negative, and hence the
value of V(q) given by Eq. (8) diverges. In this paper, we
applied a modified version of a Shepard interpolation
scheme16,17 previously applied directly to V(q). This method
does not make any assumption, and it allows for systematic
improvement as the number M of points k is increased.

The Shepard interpolation algorithm, in internal coordinates
q, yields

(17)

where the normalized weights Wi (q) are defined as

(18)

and

(19)

gi
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and V12' (q;k) is a modified quadratic function 

(20)

where the quadratic part is

(21)
and the modification is

 

(22)

We use a very small value of δ, 1× 10−8 Eh
2 (where 1 Eh = 1

hartree), so that Eq. (22) converges rapidly to 1 with
increasing values of [V12(q;k)]2. The constants D(k), b(k), and
C(k) are chosen such that Eq. (20) combined with Eq. (8)
reproduces the expansion 12.

The weights should be chosen so that several conditions
are fulfilled:

wk(q(k)) = 1,     all k ; (23)

wk( ) << 1,   (24)

all (25)

all (26)

Equations (23) and (24) are required so that Eqs. (8), (17),
and (18) essentially reproduce the values of the target Born-
Oppenheimer surface at the Shepard points. Eqs. (25) and
(26) are required so that Eqs. (8), (17), and (18) reproduce
the linear and quadratic terms of Eq. (12) at the Shepard
points. In fact, wk goes to zero as q approaches  ,
and it must do so rapidly enough to preserve these linear and
quadratic terms as well. Furthermore, Wk(q) should be
continuous and smooth; as we move from point k to point

, the values of V12(q) and its derivatives should go
smoothly from their values at q(k) to their values at .
The weighting function we are using is

(27)

where dk(q) denotes a generalized distance between q and
q(k) defined as:

(28)

where  is less than or equal to the number N of internal
coordinates used in Eqs. (8)-(18).

The reaction rates have been calculated using the
variational transition state theory including multidimensional
tunneling approximation, which have also been described in
many literatures.18-20 We have used MC-Tinkerate that
interconnect Polyrate and Tinker program packages for the
rate calculations.

Results and Discussion

The optimized structures of BH5 at the QCISD level have
Cs symmetry. The MCCM level of theory also predicts the
Cs structure and the geometrical parameters are listed in
Table 1 along with the previous high-level ab initio results.5

The bond lengths for B-H2 and B-H3 at the QCISD level
and are longer than the corresponding values from the ab
initio study, whereas those from the MCCMs are slightly
shorter. The geometrical parameters from the MCCMs show
good agreement with those from the CCSD(T)/TZ(3d1f,2p1d)
level. In particular, the structure from the MCG3 method
agrees very well. Table 2 lists the geometrical parameters for
the transition state (TS) of hydrogen scrambling. The QCISD
level predict the TS structure with C2v symmetry, which is
consistent with the CCSD(T)/TZ(3d1f,2p1d) level. All MCCMs
used in this study give the same symmetry for the TS too.
The TS structures from the MCG3 and MC-QCISD methods
agree almost perfectly with that from CCSD(T)/TZ(3d1f,2p1d)
level.

Table 3 lists the dissociation energies of BH5 and barrier
heights of hydrogen scrambling calculated at various levels
of theory. The De values from the QCISD level are 2.14 and
1.89 kcal/mol, respectively, which are too small, and the V‡

values are 7.52 and 7.57 kcal/mol, respectively. Schreiner
et al.5 have performed various levels of ab initio calculations
for the BH5 systems. They found that geometry and energy
of BH5 depend very much on the level of theory and the size
of basis sets. The De values at the CCSD(T) level with TZ2P
and DZP basis sets were 3.32 and 0.82 kcal/mol, respectively.
They have reported 5.82 and 5.65 kcal/mol for the De and V‡

values, respectively, at the CCSD(T)/TZ(3d1f1g,2p1d)//
CCSD(T)/TZ(3d1f,2p1d) level, which is the highest level of
theory used so far. The De and V‡ values at the CCSD(T)/
TZ(3d1f,2p1d) level were 5.26 and 6.11 kcal/mol, respectively.
Adding one set of boron g-type function increases the
dissociation energy and decreases the barrier height.
Considering higher electron correlation and using larger
basis sets seem to increase the dissociation energy and
decrease the barrier height.

All De and V‡ values from the MCCM agree very well
with those from the CCSD(T)/TZ(3d1f1g,2p1d) level. In
particular, the MCCM-UT-CCSD values agree almost
perfectly. The G3//QCISD/TZ2P level underestimates the
dissociation energy and slightly overestimates the barrier
height. The Do values at the CCSD(T)/TZ(3d1f1g,2p1d)
level is 0.92 kcal/mol, which is larger than all the MCCM
values. Schreiner et al. have obtained zero-point energies

V12′ q;k( )[ ]2 V12 q;k( )[ ]2u q;k( )=
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=D k( ) 1 b k( )T

q q k( )
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from frequencies calculated at the CCST(T)/TZ2P level
and scaled by 0.95. The MCCM frequencies are not
scaled. If we scaled these frequencies by 0.95, the Do values
would be increased by about 0.27 kcal/mol, and then our
MCCM values agree quite well with the results by Schreiner
et al.

The potential energy curve along the dissociation coordinate
calculated at the QCISD/TZ2P, QCISD(T)//QCISD/TZ2P,
CCSD(T)/cc-pVQZ//QCISD/TZ2P, and G3//QCISD/TZ2P
levels are shown in Figure 1. We have plotted the potential
energy with respect to the distance between B atom and the
center of H2 unit, Rc, as the dissociation coordinate. The
QCISD level show unusually flat region on the potential

energy curve where Rc is between 1.6 and 2.4 Å. Using
higher level of electron correlation increases the well depth
and improves the shape of the curve, as shown in the curve at
the QCISD(T)//QCISD/TZ2P level, but this curve is still far
from the standard Morse type potential curve. At the CCSD(T)/
cc-pVQZ//QCISD/TZ2P level, the potential curve is very
smooth without the flat region. Not only high correlation
level but also larger basis sets seems mandatory for the high
quality potential energy surface. The potential energy curves
plotted at the MCCM levels are shown in Figure 2. These
potential curves are quite consistent with each other, and no
flat region is appeared. However, these curves cannot be
fitted into a single Morse type function either. It is not

Table 1. Geometrical parameters of BH5 optimized at the MCCM levels along with the high level ab initio resultsa

Parameters
QCISD/
TZ2P

MC-QCISD
MCCM-UT-

CCSD
MCCM-UT-
MP4SDQ

MCG3
CCSD(T)/TZ
(3d1f,2p1d)b

r (B-H1) 1.198 1.203 1.196 1.195 1.204 1.202
r (B-H2) 1.472 1.401 1.401 1.397 1.411 1.422
r (B-H3) 1.484 1.415 1.416 1.411 1.425 1.436
r (B-H4) 1.191 1.194 1.187 1.186 1.195 1.194
r (H2-H3) 0.786 0.808 0.796 0.796 0.805 0.799
θ(H1-B-H2) 80.2 79.2 79.5 79.5 79.4 79.6
θ(H2-B-H3) 30.8 33.4 32.8 32.9 33.0 32.5
θ(H4-B-H5) 119.9 120.1 120.0 120.1 120.1 120.1

aBH5 structure has Cs symmetry. Lengths are in Å and angles in degree. bReference 5.

Table 2. Geometrical parameters for the transition state of hydrogen scrambling in BH5 optimized at the MCCM levels along with the high
level ab initio resultsa

Parameters QCISD/TZ2P MC-QCISD
MCCM-UT-

CCSD
MCCM-UT-
MP4SDQ

MCG3
CCSD(T)/TZ
(3d1f,2p1d)b

r (B-H1) 1.268 1.268 1.260 1.258 1.271 1.270
r (B-H2) 1.250 1.250 1.242 1.240 1.253 1.251
r (B-H4) 1.180 1.187 1.181 1.178 1.187 1.187
r (H1-H2) 1.080 1.089 1.081 1.080 1.088
θ(H1-B-H2) 50.8 51.2 51.2 51.2 51.0
θ(H4-B-H5) 128.1 128.1 128.1 128.1 128.0 128.1

The TS structure has C2v symmetry. Lengths are in Å and angles in degree. bReference 5.

Table 3. Dissociation energies of BH5 and barrier height for hydrogen scrambling calculated at various levels of theorya

Level De Do De (fit) V ‡

CCSD+T(CCSD)/[5s4p3d1f/4s2p1d]//MP2/[3s2p1d/2s1p]b 5.4 0.9 7.2
CCSD(T)/TZ2P c 3.32 0.72 6.79
CCSD(T)/DZP c 0.89 0.19 6.38
CCSD(T)/TZ(3d1f,2p1d)c 5.26 0.36 6.11
CCSD(T)/TZ(3d1f1g,2p1d)//CCSD(T)/TZ(3d1f,2p1d)c 5.82 0.92 5.65
QCISD/TZ2P 2.14  -2.69 7.52
G3//QCISD/TZ2P 4.95 5.13 6.10
CCSD(T)/cc-pVQZ//QCISD/TZ2P 5.58 5.74 5.96
MC-QCISD 6.15 0.83 6.12 5.44
MCCM-UT-CCSD 5.76 0.37 5.76 5.71
MCCM-UT-MP4SDQ 6.11 0.73 6.09 5.59
MCG3 5.95 0.65 5.92 5.83

aEnergies are in kcal/mol. De and Do are dissociation energies from the equilibrium structure and from the zero-point energy level, respectively. V‡ is the
barrier height for the hydrogen scrambling of BH5. bRef. 24. cRef. 5. Zero-point energies are scaled by 0.95.
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surprising since the reaction coordinate parameter, Rc, is not
defined with a single bond distance. So we made an equation
with two range parameters for the Morse type function to fit
the potential curves, as shown in Eq. (29).

(29)

In this equation, α1 and α2 are range parameters, Re is the
minimum of the potential energy curve, and α and (1−a)
controls the relative importance of two terms with range
parameters. The estimated De values from Eq. (29) are listed
in Table 3, and these values at the MCCM levels are almost
identical to the optimized De values. The Re values are 1.351,
1.351, 1.348, and 1.360 Å at the MC-QCISD, MCCM-UT-
CCSD, MCCM-UT-MP4SDQ, and MCG3 levels, respectively.

Although the G3 method cannot be used to calculate the
potential energy curve for the dissociation of a molecule to
atomic species because of the HLC term, it is okay for BH5

dissociation since it dissociates into two molecular species,
BH3 and H2. The potential curve from the G3//QCISD/TZ2P
method is shown in Figure 1. This curve is better in shape
than those at the QCISD or QCISD(T) levels. We have fitted
the G3 potential curve to Eq. (29), and obtained 5.13 kcal/
mol and 1.360 Å for the De and Re values, respectively. The
Re value is the same as that from the MCG3 method,
however, the De value is smaller than the MCCM and the
CCSD(T)/TZ(3d1f1g,2p1d) values. The potential curve at
the CCSD(T)/cc-pVQZ//QCISD/TZ2P level was also fitted
to Eq. (29). This curve is lower in energy than the G3 curve.
The well depth from the curve fitting is increased to about
5.74 kcal/mol and the Re value is 1.366 Å. This well depth is
almost identical to the De value at the CCSD(T)/
TZ(3d1f1g,2p1d) level. These results suggest that at least the
CCSD(T)/cc-pVQZ level of theory is required to generate

reasonably accurate potential energy surface of the BH5

dissociation.
Figure 1 and Figure 2 shows quite clearly that the MCCMs

can correct the incompleteness of the QCISD level with
TZ2P basis sets for the potential energy surface of BH5

dissociation. This method is even superior to the QCISD(T)/
TZ2P and G3 methods. It is interesting to note that only
experimental atomization energies are used to adjust the
coefficients of the MCCM. No experimental data for weak
chemical interactions are used. The MCCMs have been
tested successfully to reproduce the structures and energies
of hydrogen-bonded dimers21 and hydrated proton clusters,22

and proton affinities of molecules.23 This study and previous
results suggest that the MCCM could be applied to
reproduce many other chemical properties than the atomization
energy. Another important observation is that the most
accurate method among the MCCMs for the atomization
energy is not necessarily the case for other chemical
properties.21 In this study, all four MCCMs give almost the
same results in the dissociation energy and barrier height.
The Maximum deviation within these four methods is only
0.4 kcal/mol for both dissociation energy and barrier height.
The MCCM-UT-CCSD agrees the best with the CCSD(T)/
TZ(3d1f1g,2p1d) level.

We used the MM3 force field for the V11 and V22 terms in
Eq. (7), and the MCCM-UT-CCSD method was used for
energies, gradients, and Hessians for the high-level Shepard
points. We defined several force field parameters for BH5

that are missing. The potential and vibrationally adiabatic
energies along the reaction coordinate are shown in Figure 3.
We have used 15 high-level Shepard points step by step to
generate the potential surfaces. The potential energy, Vmep, is
very smooth, however, the vibrationally adiabatic potential
energy, Va

G, runs in and out slightly, along the reaction

V De[[1 a α1 Rc Re–( )–{ }exp–=

1 a–( ) { α2– Rc Re–( )}] 2 1–exp ]–

Figure 1. The potential energy curves along the dissociation
coordinate of BH5. The partially optimized structures at the
QCISD/TZ2P level were used. The open circles, closed triangles,
open triangles, and closed squares are obtained at the QCISD/TZ2P,
QCISD(T)//QCISD/TZ2P, G3//QCISD/TZ2P, and CCSD(T)/
cc-pVQZ//QCISD/TZ2P levels, respectively.

Figure 2. The potential energy curves along the dissociation
coordinate of BH5. Potential energies were calculated by using the
partially optimized structure at the QCISD/TZ2P level. The closed
circles, open circles, closed triangles, and open inverted triangles
are from the MC-QCISD, MCCM-UT-CCSD, MCCM-UT-MP4SDQ,
and MCG3 methods, respectively. The lines passing through the
point are from the best fit of Eq. (29).
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coordinate. It occurs in the interpolated region between high-
level Shepard points, and, in principle, it will be disappeared
when we use infinite number of Shepard points. The
tunneling coefficients and rate constants are listed in Tables
4 and 5. The microcannonically optimized tunneling
coefficient is 7.2 at 300 K, which is large compared with the
tunneling coefficient of general proton transfer reactions.
The Arrhenius plots for the rate constants are shown in
Figure 4. The plot for the rate constants including tunneling
correction is curved; it becomes flat at a very low temperature,
which indicates large tunneling effect. The rate constant at
300 K with this tunneling coefficient is 2.1 × 109 s−1, which
is very fast. This suggests that the hydrogen scrambling
might compete with the fast dissociation of BH5 into BH3

and H2.

Conclusions

We have calculated structures and energies of BH5 and the
TS for the hydrogen scrambling using recently developed
multi-coefficient correlated quantum mechanical methods.
Our results agree very well with those from the CCSD(T)/
TZ(3d1f1g,2p1d) level. We have also calculated the potential
energy curves for the dissociation of BH5 into BH3 and H2.
The QCISD level with TZ2P basis sets produce a flat region
on the potential curves, where reaction coordinate parameter,
Rc, is around 1.6 and 2.4 Å. It would be necessary to use the
CCSD(T)/TZ(3d1f1g,2p1d) level of theory to generate the
reasonable potential energy curve for the BH5 dissociation.
The lower levels of theory were unable to give correct
potential curves, whereas the MCCM generates very good
potential energy curves and requires much less computing
resources than the CCSD(T)/TZ(3d1f1g,2p1d) and CCSD(T)/
cc-pVQZ levels. 

The MCCM-UT-CCSD level of theory was used for the
energy, gradients, and Hessians of high-level Shepard points,
to generate the potential energy surface using the MCMM
algorithm. Tunneling is very important and the rate constant
for the BH5 scrambling is 2.1 × 109 s−1, which is very large.
This suggests that the hydrogen scrambling might compete
with the fast dissociation of BH5 into BH3 and H2.
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