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in 55% yield.
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An approximate nonlinear theory of the Oregonator model is obtained with the aid of an ordinary perturbation method
when the system is perturbed by some kinds of external input. The effects of internal and external parameters
on the oscillations are discussed in detail by taking specific values of the parameters. A simple approximate solution
for the Oregonator model under the influence of a constant input is obtained and the result is compared with the
numerical result. For other types of external inputs the approximate solutions up to the fourth order expansion
are compared with the numerical results. For a periodic input, we found that the entrainment depends crucially
on the difference between the internal and external frequencies near the bifurcation point.

Introduction

With the aid of the star expansion method, originally pro-
posed by Houard and his coworkers' ™3, two* of us have ob-
tained approximate nonlinear solutions for the Schlogl mo-
dels® under the influence of some kinds of external input
and compared the numerical predictions with the exact solu-
tion available for some cases and also with the linearized
solutions and the approximate ones obtained by the Feynman
method. Although the approximate solution based on the star

expansion method and that obtained by the Feynman method
numerically agree well with each other, the former is more
systematic and simpler. We also have extended the star ex-
pansion method to the Lotka-Volterra model, which is the
two-component chemical reaction model exhibiting the sus-
tained oscillation and then discussed the effects of nonlinea-
rity, amplitude and frequency of the external input on the
chemical oscillations in the model by taking specific values
of the model parameters®.

The purpose of the present paper is to discuss the effects
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of external inputs on nonlinear oscillations in the Oregonator
model’ proposed by Field and Noyes for the Belousov-Zha-
botinskii reaction. There are three intermediates in the Ore-
gonator which make the application of the star expansion
method too complicated contrary to other models mentioned
above. Therefore, we adopt Feynman’s theory of ordinary
perturbation method instead of the star expansion method
in this work. In section II we present the general method
to be used for the Oregonator. In section Il we obtain a
simple approximate solution for the Orgonator under the inf-
luence of the constant input and compare them with the
numerical results obtained by using the differential equation
solver, subroutine DGEAR of IMSLS. For the cases of diffe-
rent kinds of external input the approximate solutions up
to the fourth order expansion are numerically compared with
the numerical results.

Theory

Probably the best characterized homogeneous self-oscilla-
tory chemical reaction is the Belousov-Zhabotinskii (BZ)
reaction involving the cerium ion catalyzed oxidation of ma-
lonic acid by acidic bromate. Field, Koros and Noyes propo-
sed a complex system of 10 chemical reactions with 7 inter-
mediates as a model for the BZ reaction in batch system®.
From this system Field and Noyes abstracted a simple model
called the Oregonator.

k1 k2
A+Y—X, X+Y—P
k3 k4
B+X—2X+Z, 2X—Q,
ks
Z—f, Q

where A and P are the reactant, BrO; and product, HOBr,
respectively; X, Y, and Z are the intermediates, HBrO,, Br~,
and Ce®", respectively; and &’s are the rate constants. From
now on, the concentration will be represented by its chemical
species for the notational simplicity, for example, A=[A].
The numerical values of k, through k,, as well as A and
B are’

A=B=006 M, k=134 M 57}, k,=16X10° M 's7!
k3=8X10° M 's7!, k=4 X107 M 17! @
The stoichiometric factor f and the rate constant ks are the

controllable parameters. It is convenient to introduce the
following scaled variables:

x= k’i;x 20X 100X, y_kiZB Y=33X10°,

1= e z220x10Z, 5= {32} "2 1,

b= (iksAB) 2 6.25 <,

= —f;%—z&mxm*, w= (le—kjmT ~0.161

&0 = Wz;fsm—m— £ = 247X 10%(2) €Y

where t and &(f) are the real time and the external input,
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respectively. The dimensionless rate equations with the sca-
led external input may be written as

Z’;—s(y wt+x—gH+ ¢

dy_ v, _
=S (—=y—xy+f2)

L w2 @

Defining the fluctuating variables due to the external input
near the steady state (xo, yo, 2o) as

X=A KXo, X2=Y—Yo, X3 =220, )
where
_, _ 1=f—q+[A—-f—¢)+4¢A+N]" £ %
o= % 3= T, ©

we may obtain the following equation
d
(E(xb X2, %) =M, 22, x)T+ AW, X2, 2)T+HE 0, O, (7)

where

M= =yfs  —+xo)/s fls 0 —x/s O

w 0 —w 0 0 0

It should be noted that in Eq. (7) we have neglected the
gx* term in the nonlinear part on the ground of the fact that
the quantity ¢ is so small that its effect is negligible compared
to the other nonlinear parts. The eigenvalue of M satis-
fies

l:s(l_quo‘yo) s(1—x) O ] [—sxz 0 0:|

N+AN +B+Co=0; ®

where

Ao=[s(1—y5—2gx0) —s A +x0)—w],
Bo=[s""w(1+x0)— sw(1—yo— 2gx6) — (1 +x0)(1 —yo— 2gx0)],
Co=Lw(1+x0)(1— 30— 2qx0) — wf1—x0) —yo(1—%0)],

Let w' and ¢; be the left and right eigenvectors of M with

eigenvalue —2J,, that is,

M= —3W¥; W=, v wiT (=1, 2, or 3). 9)

There exist six eigenvectors corresponding to —A,. Three
independent eigenvectors are

i1y=41— s(1—x0) sw(l—xy) 17
v={1- 525 G et
ion_§ A—s Y(1+x0) s T
e e e R = RE
im—{_ A—sT'+x)]h—w) A-w .17
vig)={ T ek T
With the aid of Eq. (9), Eq. (7) reduces to
%;‘—z —AutButn, 1)

where
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M 0 O
p=vz, x[ 0 A O ] B=vA¢, n=v(, 0, 0,
0 0 X
v=(V, V2, ¥3) 0=(9,, d,, ¢s). (12)

Using the complicated procedures, the components of the
matrix B are

b=+ o+ ashts, b= Bup + Bratz + Braps,

bis=ynm+Yizle Y133, 521 = G2 T Qapte Ao,

bye=Pam+ Bazpz+ Baspas byp= Yaph t Yazhz Y23,

b1 = Qa1 + Ozphz + Qaapta, b3 = Bt + Bz + Busps,

b33 =71t T YaMz +Yasis, 13)
where
ay= —SWidudy —s~ Vadudy, 05= —SWidudy—s T Vidu0y
05 = — sWib1ady — 5 Wideadys By= —sWikudy—s Viduby
By = —sWibrzty —s ' Wi0n0y, By= —SWididy—s 'Widndy
T5= —SWioudy S Wi0udy 15T —SWidudy—s T Widudy

Y5= —SWituady— 5 W30y (=1, 2, or 3). (14)
Introducing the variable p(t) as
p(O)=-exp(A)p(s), (15)
Eq. (11) becomes
2 py=Cz0+n0), as)
where
n'(t)=exp@Ad) 1. )
and the components of matrix C are given as
Cyi=b; exp[(A—M)t] 18)

The general solution of Eq. (16) as
¢ 1
b= 3 ['dx Gison o) 19)
f=
where the retarded Green function G(4t) satisfies
:—tG(t,t)= — C@- G, (20)
The solution of the Green function is
CitD=8;+ Y f @Y Ca@IGHT), @1
k=17t

Expanding G; and C; in tes of the external input, we
have

Gitm= 2 G, C= 3 CRO), @2)

The n-th order of the Green function corresponding to the
(n—1)-th order of the input is

Gto=Y Y 3 f HCPEIGH),
[F1m=0k=1J1

G2(t,1)=8; (+m=n21) 23
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Then, p(f) has the following solution

uo= T uO=exp(-A0 Y. [lae Grreomi. @

Discussion

It is well known that the oscillatory behavior of the Orego-
nator depends on the values of k5 and f. Field and Noyes"
carried out normal mode analysis to investigate the stability
of the Oregonator and constructed a bifurcation diagram nu-
merically indicating both stable and unstable regions in the ks-
S plane. Across the bifurcation line dividing the stable and
unstable regions the Oregonator shows the Hopf bifurcation
phenomenon. Let us discuss the nonlinear responses in two
cases. In the first case, the system is in the stable region
far from the Hopf bifurcation’ and in the second case it is
extremely close to the bifurcation point. An example of the
first case is obtained when f=0.5002000 and ks=1 s~ The
choice of the value of ks=1 s~! corresponds to experimental
observation. The choice of the value of f is somewhat arbit-
rary but we choose this value for which noticeable nonlinear
response can be observed. Following the analysis of Field
and Noyes, we found in this case numerically that the system
has the following eigenvalues.

M =0.06398+(—) ¢ 2433, A3=811 (25)

A Hopf bifurcation point can be obtained by increasing the
value of f while keeping the value of ks at the constant value
of 1 s™% Thus, an example of the second case is obtained
at f=0.5010695. At this point the eigenvalues are

)\.1(2)2 1.67X 10_6+ (—) 1 2431, }\az 809.7 (26)

In both cases the eigenvalue Az is so large that the modes
containing this eigenvalue can be neglected.

The responses of the Oregonator are discussed for three
kinds of external input by taking specific values of the para-
meters. The kinds of external input are

n#)=n : constant input,
ne)=n exp(—«?) : exponentially decaying input,
n@#)=n sin(w!) : periodic input.

In each figure, the results of the approximate solution and
the numerical results obtained from Eq. (4) are displayed
in parts (a) and (b), respectively, and the odd (even) numbe-
red figures indicate that the system is far from (extremely
close to) the bifurcation point.

Constant input. The linear solution is

W= {%{1—exp(—ht)} G=1,20r3 @D
The detailed procedure to obtain the nonlinear solution for
w(#) is given in the previous section. From Eq. (24), the
2nd order expansion term is

piP() = exp(—Asf)
X f [Gﬂ’(t,t)m(t) +GHRE MO+ Gié’(t,r)na(r)]dr (28)

The first term in the integral denoted by p;?(f) is easily
obtained as



A Nonlinear Theory for the Oregonator

WO~ 12— M, ) £ exp(—ut)
1

M A
(B St A+ L2 e a
% %_‘2}\2— exp(—Aat) + meXp( 2ut)
+ 1 ";\12 expl — O+ A)t], (29)
where
Aum— B g ;A,,, (30)

The above solution is relatively simple. However, as the or-
der of expansion becomes higher, the procedure and solution
become much more complicated. Thus, let us compare the
effects of the modes on the solution to obtain a simpler solu-
tion. When the system is far from the bifurcation point, the
other modes except the constant mode decay exponentially.
Thus, the constant mode plays the most important role after
long time. As the system approaches extremely close to the
bifurcation point, the main contribution mode is ¢ exp(—Ayt)
after long time. Thus, we may obtain the approximate solu-
tion for A{2(¢) after long time, when the system exists bet-
ween the two extreme cases.

[Aw

()~ ~ (A=A ¢ exp(~ ) 31)

Including the most dominant parts from the other parts in
the integral, ;,®() becomes after long time

Y
P+ Faw+ Bag| ten-an, @2
where
Ay'=-— Jﬁl"— A,—o”:——kZA,-k” 33)

The magnitudes of the parameters given in Egs. (30) and
(33) depend on the eigenvectors defined in Eq. (10). Let
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ui2() be the solution u{®(f) based on the eigenvector y'(j).
In this case the magnitudes of n3A1"/AsA; and n3Ap"/A; are
less than other parameters. Thus, the approximate solution
is

(2)(t) iy Alo 1_'|_A10
- )\' }\,1 Aoz )\-l
+[ ?\I‘ An—Awt+ %Au'] ¢ exp(— M), 34)

Including the higher order terms, we may express an appro-
ximate solution for p;-;(f) as

o= (14 A5+ e Mt du

lx_Am }\.2 }\1 )\-1"A10
+[- L expaw+ '—‘lﬁl"t—] exp(— ) (35)
A A 1-Ayd !

where the series converges only when the following condi-
tions are satisfied:

4_10_<1,

~ 24,¢<1. (36)

Defining the solution for p;_; as

M -{Owr—j+uz-; exp(— i),
Po— (O =1 + s exp(—Aib),
TE () P (37

the solutions according to the basis eigenvectors are given
in the Table 1. With the aid of Eq. (10) we may obtain x;-;.
Thus, the general solution for x{f) is the linear combination
of x;_1, x;—2, and x,_3, that is,

x®)=Ci-1 %O+ Ciz 2, (O +Ciz x5 @) (38)

The coefficients can be obtained by comparing the linear
results in Eq. (28) and the numerical linear result from the
differential equation solver, subroutine DGEAR of IMSLS.
As shown in the table, the functions based on the eigenvector
(1) have the same form as the functions based on y'(2).
However, the magnitudes are quite different. Comparing the
linear results, we obtain x/s approximately as

xl(t)EZ.Ox,_1+0.0010x1_3,
xz(t)E —15X 1075}(1;2,

xg(t) =0.013x3-1—1.3x3_3, 39
Table 1. The Functions Based on the Eigenvectors
Function Uy—; Uy j - us; u )
eigenvecto
T Ao m 24 N2 Mmoo, MmAn A
1 —<1+7) — L exp24) —[1+— -2 By S
v M M—241 At P Az Az MM A A—Ap
nz A’ M+Ay Ay ( Ap A )] , n An M
2 + = - — + ———+Ay't X1+ — ———— Xexp(2Az't +
ve A A h—Au 1=Agt " he Aot 2Az ANt T h—An
—In(Q+Ay'hH
; N3 M Az A n3 m A
[€)) -+ — The same as the - [ ] The same as -+t = —
v M A Ay (M—Ayp) A3 M As—Ay
above. , the above.
X[1+ Mg ] ns Ag
(M—Ay) Az A—Ax
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Figure 1. The oscillation of the system far from the bifurcation point under constant input with £=0001. (a) approximate and
(b) numerical results.
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Figure 2. The oscillation of the system extremely close to the bifurcation point under constant input with £=0.001. (a) approximate
and (b) numerical results.
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Figure 3. The oscillation of the system far from the bifuraction point under exponentially decaying input with £=0.1 and k=0.1.
(a) approximate and (b) numerical resuits.
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Figure 4. The oscillation of the system extremely close to the bifurcation point under exponentially decaying input with £€=0.1
and x=0.1. (a) approximate and (b) numerical results.
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Figure 5. The oscillation of the system far from the bifurcation point under periodic input with £€=0.1 and w=2. (a) approximate
and (b) numerical results.
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Figure 6. rhe oscillation of the system extremely close to the bifurcation point under periodic input with £=0.1 and 0=2. (a)
approximate and (b) numerical results.
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Figure 7. The oscillation of the system far from the bifurcation point under periodic input with £=0.1 and @=2.5. (a) approximate

and (b) numerical results.
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Figure 8. The oscillation of the system extremely close to the bifurcation point under periodic input with £=0.1 and w»=2.5. (a)

approximate and (b) numerical results.
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With the aid of the above result the approximate result for
the system far from the bifurcation point is given in Figure
1 and compared with the numerical result. From now on
the first figurés in (a) and (b) show x;() as the function
of time and the second and third figures represent the phase
trajectories between x; and x; and x; and x3 respectively.
The figures show that the approximate results deviate a lot
from the exact numerical solutions. The main reasons for
the difference are that the approximate results are oversimp-
lified and hold in the long time region. In spite of the differ-
ence both results show similar trend, that is the approach
to the new stable focus®. In the case of the system extremely
close to the bifurcation point it takes very long time to arrive
at the stable focal point. This behavior can be seen most
clearly in the 1, vs. x3 phase trajectory (see Figure 2).

Exponentially decaying input. When the system is
perturbed by a decaying input, the oscillations of the system
are quasi-periodic. In this case, the linear solution is

uh= 5 —Lexp(— k)= exp(~A)] (40)

When the system is far from the bifurcation point, the oscil-
lation decays very rapidly and approaches to 0, as shown
in Figure 3, since all the modes have decaying exponential
form. If the system is very close to the critical point, the
oscillation is decaying periodic for some time and then beco-
mes periodic due to the internal modes (see Figure 4).

Periodic input. If the response of the nonlinear oscilla-
ting system to the periodic input is also periodic with the
external input, the response is called the entrainment’. The
entrainments are shown in Figures 5-8.

When the system is far from the bifurcation point, the
oscillations are decaying periodic for some time and then
becomes periodic due to the external modes (see Figures
5 and 7). The phenomena are independent of the difference
between the external and internal frequencies. Of course,
the period depends on the external frequency.

For the system extremely close to (and at) the bifurcation
point the oscillating phenomena severely depend on the dif-
ference between the internal and external frequencies. When
the difference is large, the oscillation is simply periodic as
given in Figure 6. If the difference is very small compared
with the internal frequency, the phenomenon of beats oscilla-
tion occurs as shown in Figure 8.

We have discussed the responses of the Oregonator to
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some kinds of external input. Let us summarize the impor-
tant results.

(1) For the case of a constant input, the oscillation is sim-
ple and thus may be expressed by a simple approximate
nonlinear solution, even though there is some quantitative
difference. It is very difficult to improve the result by inclu-
ding minor effects. The system at any state approaches to
the new focal point®.

(2) When the system far from (and extremely close to
(and at) the bifurcation point is perturbed by decaying input,
the oscillation transits from a quasi-periodic to simply decay-
ing to (periodic around) the original steady state.

(3) For periodic input, the entrainment severely depends
on the difference between the internal and external frequen-
cies for the Oregonator extremely close to (and at) the bifur-
cation point®. Far from the bifurcation point the entrainment
is simply periodic, its period being dependent on the external
frequency.
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