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We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon-
gational flow using Brownian dynamics simulation. In order to describe the anisotropic molecular motion, we
modified the Giesekus’ mobility tensor by incorporating the finitely extensible non-linear elastic (FENE)
spring force into dumbbell model. To elucidate the nature of this model, our simulation results are compared
with the data of FENE-P (“P” stands for the Perterin) dumbbell model and experiments. While in steady state
both original FENE and FENE-P models exhibit a similar viscosity response, the growth of viscosity becomes
dissimilar as the anisotropy decreases and the flow rate increases. The steady state viscosity obtained from th
simulation well describes the experiments including the shear-thinning behavior in shear flow and viscosity-
thinning behavior in elongational flow. But the growth of viscosity of original FENE dumbbell model cannot
describe the experimental results in both flow fields.

Introduction

The molecular motions in concentrated polymer solution
and the melt are complex because of the intermolecular
interactions between different chains. In recent years, de
Gennes,1 Doi,2-3 and Curtiss et al.4 have described the chain
motion in such a topologically interacting system. In order to
derive the theoretical formula, they assumed that the mole-
cular motion in the direction of the chain contour might be
easier than the motion perpendicular to it. Giesekus5 also
used the assumption of anisotropic molecular motion in
order to derive the constitutive equation for polymeric liq-
uids. One-mode simple Giesekus’ model well predicted the
steady state viscosity and the growth of shear viscosity.5-b,c

However, in elongational flow field, his simple model could
not show the characteristic behaviors of polymeric liquids
such as strain-hardening in transient state and viscosity-
thinning in steady state. To overcome the oversimplified
one-mode simple model, he introduced the relaxation-type
dependence of the mobility5-d on the configuration tensor. 

The same constitutive equation of simple Giesekus’ model
can be also derived in terms of the phase-space kinetic
theory6 of polymeric liquids if we consider a polymer chain
as a Hookian dumbbell which consists of two identical beads
connected by a massless spring named connector vector. The
linear Hookean spring force is realistic only for small defor-
mation from the equilibrium. Whereas the dumbbell with
Hookean spring is infinitely extensible, real polymers can
certainly be extended to their fully stretched length at most.
For large extension of a polymer the linear spring-force law
is a poor approximation, so it can be improved by introduc-
ing the FENE spring force.7 Dumbbell models with FENE
spring force are now widely used in numerical flow calcula-
tions; both in the classical approach via a closed constitutive
equation8 and in a new approach in which the polymeric
stress tensors are computed via Brownian dynamics (BD)

simulation.9 
Wiest10 modified the Giesekus constitutive equation b

incorporating the finite extensibility of polymer chains int
the dumbbell kinetic theory. The modified constitutive equ
tion quantitatively described the steady state viscosity in 
shear and elongational flow, but could not reproduce 
growth of viscosity in elongational flow. When he modifie
the constitutive equation, he used the FENE-P11 spring force
in order to obtain an analytically more tractable constitut
equation because no closed constitutive equation for 
polymeric stress tensor exists and no simple analytical s
tions are possible for original FENE dumbbell model.

In this paper, we use the Brownian dynamics simulat
method to obtain the polymeric stress tensors for the orig
FENE dumbbell model with the anisotropic mobility tenso
We also derive the constitutive equation in simple form 
the FENE-P dumbbell model using the phase-space kine
theory. From the Brownian dynamics simulation, we obta
the growth of and steady state viscosity for simple shear 
elongational flow. These results will be compared with tho
of FENE-P dumbbell model and experimental data. 

Constitutive equation for the FENE-P dumbbell model 

The diffusion equation of configurational distributio
function 4-d for connector vectors  of
anisotropic dumbbells can be represented by:

 (1)

where κκκκ is the transpose of macroscopic velocity gradient,kB

is the Boltzmann constant, T is the absolute temperature, 
is the anisotropic mobility tensor,  is a tensor for th
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anisotropic Brownian motion, and F (c) is the connector
force. In order to represent the anisotropic molecular motion,
we use the anisotropic mobility tensor, , suggested by
Giesekus5-b in terms of the macroscopic quantity:

 (2)

where ς is the friction coefficient of a bead, δ is a unit tensor,
α is an anisotropy parameter, n is the number density of
polymer molecules, and τp is the stress tensor contributed
from polymer molecules. If we assume the Brownian motion
is isotropic ( ), we can obtain the polymer contribu-
tion to the stress tensor of Kramers expression:4-d

 (3)

where the angular brackets indicate an ensemble average
over all  Q using . 

Warner7 proposed the following original FENE spring
force:

 (4)

where H is the spring constant, Q is the length of connector
vector, and Q0 is the maximum extensible spring length.
When this original spring force is applied to Eq. (1), no
closed constitutive equation for the polymeric stress tensor
exists and no simple analytical solution is possible. There-
fore, we will evaluate the average of the stress tensor via
Brownian dynamics simulation.12-13 An analytically more
tractable dumbbell model which leads to a closed constitu-
tive equation can be obtained by replacing the configuration-
dependent non-linear factor in the FENE spring force with a
self-consistenly averaged term. The FENE-P (“P” stands for
Peterlin11 who introduced this idea) approximation for
FENE spring force is expressed as:

 (5)

Using the FENE-P spring force, we obtain the closed consti-
tutive equation

 (6)

where  is the trace of the stress tensor in reduced
units, and the subscription (1) of  denotes upper convec- 

tive derivative of , here D/

Dt is the material time derivative and κκκκT is the transpose of
κκκκ. This constitutive equation is equivalent to Eq. (8) of
Wiest10 if we express the parameter Z into reciprocal form.
In deriving Eq. (6), we used the reduced units: time t = λHt*,

λH = ς /4H, length Q = lQ*, l2 = kBT/H, finite extensibility
parameter b = HQ0

2/kBT, and stress tensor ττττp= nkBTττττp
*.

Hereafter, we will express the physical quantities in reduc
units without any superscripts.

Brownian dynamics simulation for original FENE 
dumbbell

When we assume the Brownian motion is isotropic (ξ−1

= δδδδ), Eq. (1) is equivalent to the Ito stochastic different
equation14 (SDE) for a three-dimensional Markov proces
Q: 

 (7)

where ςςςς−1 = δ δ δ δ − αττττp, , , and 
 = min(t1, t2) δδδδ.

The Wiener process W is the 3-dimensional Gaussian pro
cess of which first moment is zero vector and seco
moment is a diagonal matrix whose element is minimu
time between two Wiener processes. The first term of ri
side of Eq. (7) is that of the deterministic ordinary differe
tial equation (ODE), and referred as drift term. The Brow
ian motion of dumbbell causes Wiener process t
distinguishes the SDE from the ODE, so the second term
referred as diffusion term. Since the non-linear Eq. (7) c
not be solved analytically, we have to integrate it nume
cally. The simplest numerical method to integrate Eq. (7
the Euler scheme.14 For a given timestep ∆t, the Euler
scheme is given by

 (8)

where the increment  is an indepen
dent 3-dimensional Gaussian process that has the same
tistical properties in Eq. (7).

During the simulation according to Eq. (8), there is a c
tain probability that the connector vector exceeds 
allowed spring extension for FENE dumbbell model. T
avoid such unphysical range, we use the predictor-corre
Euler method.14 At low flow rate, the diffusion term intro-
duces the fluctuation into the ensemble averaged stress
sor, which appears as unwanted “noise”. This noise seve
limits our ability to calculate low flow rate viscosity, wher
the signal to noise ratio becomes very small. This unde
able noise can be reduced by variance reduction metho15;
we run a parallel equilibrium simulation (i.e. κκκκ = 0) from the
same initial configurations and with the same stochastic 
placements (i.e. Weq = W), then we obtain the variance
reduced stress tensor by subtracting equilibrium values f
the stress tensor calculated from the non-equilibrium simu
tion. 

Before closing this section we briefly define the flow sit

ςςςς 1–

ςςςς 1–  = 
1
ς
--- δ  − 

α
nkBT
------------τp 

 

ξ 1–  = δδδδ
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ττττp
*
 + Zττττp
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* ττττp
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ations and the material functions that we investigate. In sim-
ple shear flow, the velocity field is given by ,
and , where  is the shear rate and may be time depen-
dent. At inception of shear flow, the system is initially at
equilibrium and the stress tensor vanishes. For time , a
constant shear rate  is applied and the stresses grow until
they reach their steady state values. In this case, we define
three time-dependent material functions such as viscosity η+,
first normal stress coefficient , and second normal stress

coefficient  in dimensionless form: , =

− , = − . In simple elonga-

tional flow, the velocity profile is given by 

, and , where the elongation rate may be a

function of time. For time , a time-dependent material

function describing the growth of the stresses in constant
positive rate  is defined as: .

Results and Discussion

In this section, we compare the viscosities obtained from
simulation for the original FENE model with those of
FENE-P model and experimental date in both simple shear
and elongational flow. In order to obtain the polymeric stress
tensors of original FENE dumbbell model, we simulate
30000 dumbbells in each strain rate until the stress tensors
reach their steady state values. When the strain rate is low
( ), we used the timestep ∆t = 0.01, 0.0025
for shear and elongational flow, respectively. As the strain
rate increases, the timestep decreases in inverse ratio to the
strain rate: . Time-dependent stress
tensor contributed from polymer molecule is calculated as
follows:

 (9)

where N is the number of dumbbells.

Shear flow field. Shear-rate-dependent viscosity is pr
sented for various finite extensibility and anisotropy pa
meters for FENE-P and original FENE dumbbell model 
Figure 1 and 2. We can see that both models exhibit v
similar steady responses. The shear-rate-dependent visc
approaches a constant value, zero-shear-rate viscosity ηo, at
low shear rates and decreases at high shear rates accord
a power-law. The finite extensibility parameter has a lit
influence on the shear-rate-dependent viscosity. The sh
rate-dependent viscosity for both models also shows v
similar responses at higher shear rate regardless of
anisotropy parameters. As the shear rate increases, the 
of power-law region has the same value of −1 as mentioned
by Wiest.10 In experimental,4-d however, the slope range
between −0.4 and −0.9 in typical polymeric liquids.

In Figure 3 and 4, we present the growth of viscosity af
inception of shear flow for various shear rates and ani
tropy parameters. The viscosity of both models exhibits
overshoot at high shear rate before it reaches plateau re
regardless of the anisotropy parameter. However, in con
diction to experimental observations,4-d the lower shear rate
curve cannot envelope the higher shear rate curves in 
models as shown in Figure 3. The protrusions of higher r
curve over the lower rate curve become greater as the s
rate increases for both models. However, we can see tha
protrusions of viscosity curve in higher shear rate gradua
disappear as the anisotropy parameter increase. Figu
explains these behaviors. Figure 4 also shows that the m
mum and plateau value of viscosity decrease as the an
tropy parameter increases. Moreover, the overshoot oc
in earlier time as the anisotropy parameter increases. 
mobility tensor used in Eq. (7) can account for these beh
iors. That is, as the anisotropy parameter increases unde
same strain rate, the inward movement of beads cause
the spring force through the mobility tensor becomes larg
in other words, the connector vector is likely to be le
deformed against the imposed strain.

The above results imply that shear-rate-dependent vis

νx = γ·y,  νy=0
νz=0 γ·

t 0≥
γ·0

Ψ1
+

Ψ2
+ η+=−τxy/γ

·
0 Ψ1

+

τxx τyy–( )/γ·0
2 Ψ2

+ τyy τzz–( )/γ·0
2

νx=−1
2
---ε·x,

νy=−1
2
---ε·y νz=+ε·z

t 0≥

ε·0 η+=− τzz τxx–( )/ε·0

γ·0 1.0< ,  ε·0 1.0<

∆t=0.01/γ·0,  0.0025/ε·0

ττττp t( ) = δδδδ  − 
1
N
----  

i 1=

N

∑
Qi t( )Qi t( )

1−Q
2

t( )/b
-------------------------

Figure 1. Shear-rate-dependent viscosity as a function of the
shear rate for various finite extensibility parameters b. (Open
symbols represent simulation data and line curves represent the
prediction from constitutive equation)

Figure 2. Shear-rate-dependent viscosity as a function of 
shear rate for various anisotropy parameters α. (Open symbols
represent simulation data and line curves represent the predic
from constitutive equation)
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ity is more sensitive to the anisotropy parameter than to the
extensibility parameter for both models. While both models
show a similar response in steady state viscosity, the growth
of viscosity of both models does not coincide with each
other in overshoot region at high strain rate. Especially in
small anisotropy parameter, the growth of viscosities of both
models cannot predict the experimental results. 

Elongational flow field. When the elongational rate is
high, the distribution function of dumbbell becomes sharply
peaked, thus the original FENE spring force can be approxi-
mated to the FENE-P spring force as pointed out by Tan-
ner.16 Consequently, the steady state elongational viscosity
of FENE-P model at high elongational rate will coincide
with that of original FENE model. 

Figure 5 and 6 show the steady state elongational viscosity
for various finite extensibility and anisotropy parameters,
respectively. Two models show very similar steady state
responses; the elongational viscosity approaches a constant
value at low elongational rate, which is three times the corre-

sponding zero-shear-rate viscosity. Contrary to the origi
Giesekus simple model,5-b we can just find the viscosity-
thinning behaviors except α = 0.0. In Figure 5, we can see
that the maximum value of viscosity increases and 
curves become broad with increasing the finite extensibi
parameter. Figure 6 clearly shows that the viscosity-thinn
behavior occur even in a small anisotropy parameter.

The growth of the viscosity after inception of elongation
flow for various elongational rates and anisotropy param
ters is shown in Figure 7 and 8. As does in shear flow, 
differences of viscosity for both models increase at interm
diate time region regardless of the elongational rate and
anisotropy parameters. Figure 7 shows that the growth of
viscosity becomes steeper and occurs earlier in time as
elongational rate increases in both models. The viscosity
the original FENE model approaches the steady state v
more smoothly than that of the FENE-P model at high elo
gational rate. In Figure 8, we can see that the elongatio
viscosity decreases as the anisotropy parameter increa

Figure 3. The growth of the viscosity after inception of shear
flow for various shear rates . (Open symbols represent
simulation data and line curves represent the prediction from
constitutive equation)

γ·0

Figure 4. The growth of the viscosity after inception of shear
flow for various anisotropy parameters α. (Open symbols represent
simulation data and line curves represent the prediction from
constitutive equation)

Figure 5. Steady state elongational viscosity as a function of 
elongation rate for various extensibility parameters b. (Op
symbols represent simulation data and line curves represent
prediction from constitutive equation)

Figure 6. The steady state elongational viscosity as a function
the elongation rate for various anisotropy parameters α. (Open
symbols represent simulation data and line curves represent
prediction from constitutive equation)
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However, we cannot reproduce the strain-hardening behav-
ior at high rate regardless of any extensibility and anisotropy
parameters in both models.

From the above results of shear and elongation flow, we
saw that there exists discrepancy in growth of viscosity
between both models, whereas the steady state viscosity is
coincided with each other. These disagreements are caused
by the difference of FENE spring force and the expression
of stress tensor. That is to say, the non-linear force factor
of the original FENE spring force increase steeply as the
extension of the dumbbell is close to the allowable length.
Thus some population of highly stretched dumbbells leads to
the high valued stress tensor and mobility tensor. Further-
more the original FENE dumbbells response to the indivi-
dual spring force, while the FENE-P dumbbells is enforced
by the non-linear spring force in which the non-linear spring
force factor is replaced by an averaged value. These differ-
ences of non-linear spring force and its insertion into the
stress and the mobility tensor are drastically shown in Figure
7.

Comparisons with experimental data. Besides the depen-
dence of the viscoelasticity on the external parameters s
as strain rate, time, temperature, and concentration, the r
logical properties of polymeric liquid are affected by th
molecular parameters: molecular weight, molecular weig
distribution, and chain branching. In this section, we co
pare our simulation data of original FENE dumbbell mod
with nearly monodisperse polystyrene solution17 and melt,18

and largely polydisperse and branched low-density polye
ylene melt.19

Figure 9 shows the steady state shear viscosity and 
normal stress coefficient as a function of shear rate for sim
lation and the nearly monodisperse polystyrene solutio17

Though our simulation data describe the experimental res
qualitatively, we cannot fit the data of viscosity and fir

Figure 7. The growth of the viscosity after inception of
elongational flow for various elongational rates . (Open symbols
represent simulation data and line curves represent the prediction
from constitutive equation)

ε·0

Figure 8. The growth of the viscosity after inception of elon-
gational flow for various anisotropy parameters a. (Open symbols
represent simulation data and line curves represent the prediction
from constitutive equation)

Figure 9. Comparison of the original FENE dumbbell model fo
the shear-rate-dependent viscosity with the data of Menezes17 for
polystyrene solution. The data of dumbbells are drawn 
λH = 31.6s and nkTλH = 63,095 Pa s. (Filled symbols represent th
data of Menezes17 and line-open symbols represent the simulati
data)

Figure 10. Comparison of the original FENE dumbbell model fo
the growth of shear viscosity with the data of polystyre
solution.17 The data of FENE dumbbells are drawn for λH = 31.6s
and nkTλH = 79,432 Pa s, which are obtained when we fit t
viscosity data with the experimental data in Figure 9. (Fill
symbols represent the data of Menezes17 and line-open symbols
represent simulation data)
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normal stress coefficient simultaneously; if we make viscos-
ity coincided, there is a bit of discrepancies in first normal
stress coefficient between simulation and experiment, and vice
versa. In Figure 10, we show the start-up viscosity for the
same material with the parameters with which the viscosity
data are coincided in Figure 9. As we mentioned in Figure 3,
that is, the viscosity curve of lower shear rate cannot enve-
lope the high shear rate curves, the simulation data can
hardly describe the experimental results except for the plateau
region.

Figure 11 shows the data of Laun19 for the steady state
elongational viscosity of low-density polyethylene melt,
named by IUPAC-A, and the corresponding results of simu-
lation. The agreement between the simulation results and
experimental data is remarkable. With the parameters used
in Figure 11, we show the growth of elongational viscosity
for the same material in Figure 12. Though the steady state

viscosity of FENE dumbbell model coincides well with th
experimental results, the behaviors of growth of viscos
cannot describe the growth of the elongational viscos
especially in the early time region. 

Figure 13 shows the data of Münstedt18 for the steady state
elongational viscosity of polystyrene melt and the results
simulation. As does in IUPAC-A melts, the agreeme
between the results of simulation and experiment is rema
able. Using the same parameters used in Figure 13, we s
the growth of viscosity for the same material in Figure 1
Though the growth of viscosity of dumbbell model cann
exactly describe the growth of the elongational viscosity 
nearly monodisperse polystyrene melt, the discrepancy
the viscosity of polystyrene melt is smaller than IUPAC-
polymer melt. This is probably a consequence of the mo
cular parameters. The IUPAC-A polymer melt is the large
polydisperse, = 24.9 and highly branched chain19Mw/Mn

Figure 11. Comparison of the original FENE dumbbell model for
the steady state elongational viscosity with the data of Laun19 for
the IUPAC-A polymer melt. The data of dumbbell are drawn for
λH = 100.0s and nkTλH = 56,234 Pa s. (Filled symbols represent the
data of Laun19 and line-open symbols represents the simulation
data)

Figure 12. Comparison of the original FENE dumbbell model for
the growth of viscosity with the data of Laun19 for the IUPAC-A
polymer melt. The data of dumbbells are drawn for the same
parameters in Figure 11. (Filled symbols represent the data of
Laun19 and line-open symbols represent the simulation data)

Figure 13. Comparison of the original FENE dumbbell model fo
the steady state elongational viscosity with the data of Münste18

for the polystyrene melt. The data of original FENE dumbbell a
drawn for λH = 19.9 s and nkTλH = 2,818,382 Pa s. (Filled symbols
represent the data of Münstedt18 and line-open symbols represent
the simulation date)

Figure 14. Comparison of the FENE dumbbell model for th
growth of elongational viscosity with the data of Münstedt.18 The
data of FENE dumbbell are drawn for the same parameters
Figure 13. (Filled symbols represent the data of Münstedt18 and
line-open symbols represent the simulation date)
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Whereas the polystyrene melt possesses a narrow molecular
weight distribution, = 1.2.18

From our study for the anisotropic FENE dumbbell mod-
els, we find that these models well describe the experimental
results in steady state viscosity for shear flow and elonga-
tional flow. However, the FENE dumbbell models cannot
reproduce the growth of viscosity of polymer solution and
the melt in both flow fields. Besides the molecular parame-
ters such as molecular weight, molecular weight distribution,
and branching, there are several causes for the discrepancy
in growth of viscosity between dumbbell models and experi-
ments. 1) We oversimplify the polymer chain as dumbbell
model that cannot take up an enormous number of configu-
rations of polymer chain. 2) The diffusion equation for
dumbbell model cannot represent the chain entanglement
phenomena, by which the viscoelasticity of concentrated
polymer solution and the melt is rigorously affected. 3) The
averaged mobility tensor cannot correctly represent the
anisotropy of polymer chain. In concentrated polymer solu-
tion and the melt, we can reasonably assume that the chain
motion is governed not by averaged means but by the instan-
taneous configuration of individual chain.

Conclusions

We have investigated the viscosity of concentrated poly-
mer solution and the melt using the Brownian dynamics sim-
ulation for anisotropic original FENE dumbbell model. The
original FENE dumbbell model as well as FENE-P model
described well the steady state viscosity of polymer solution
and the melt in shear and elongational flow. Considering the
simplicity of the dumbbell model in our study, we can prob-
ably predict the growth of viscosity in both flow fields by
using a more realistic polymer chain model such as bead-
spring chain model or bead-rod chain model. Furthermore,
we can also obtain better simulation results by taking account
of entanglement effect and introducing instantaneous mobil-
ity tensors. 
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