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The function exp(x2)erfc(x), which is often encountered in studies of electrode kinetics, is evaluated to an extended precision
with 32 significant decimal digits in order to find theoretical relationships used in derivative polarography/voltammetry for a
chemically-coupled electrode process. Computations with a lower precision are not successful. Evaluation of the function is
accomplished by using three types of expansions for the function. Best ranges of arguments are selected for each equation for
particular precisions for efficiencies. The method is successfully applied to calculate higher-order derivatives of the current-
potential curves in all potential ranges for a reversible electron transfer reaction coupled with a prior chemical equilibrium
(i.e., a CE type process). Various parameters that characterize the peak asymmetry (such as ratios of peak-heights, ratios of
half-peak-widths, and separations in peak-potentials} are analyzed to find how kinetic and thermodynamic parameters in-
fluence shapes of the derivatives. The results from the CE process is compared with those from an EC process in which a re-
versible electron transfer is cour.ed with a follow-up homogeneous chemical reaction. The two processes exibit quite con-

trasting differences for values of the parameters.

Introduction

It has been suggested in recent years that polarographic
current-potential curves can be more precisely analyzed if
one takes derivatives of the potential-current curves and then
examine several variables that are associated with the deriva-
tive curves'?. However, there are several problems as-
sociated with the derivative approach in both computational
and experimental aspects. This paper deals with a problem in
the computational aspects.

Although most scientific computations can be handled
with double-precision arithmetic (typically 14 to 16 decimal
digits) when single-precision arithmetic (typically 6 to 9
decimal digits) yields inaccurate results, some computations
which are encountered in chemistry in recent years cannot
be adequately handled even with the double-precision mode.
For example, it has been shown that concentration-distance
profiles and current-potential-time relationships under cer-
tain polarographic/voltammetric conditions can be found on-
ly through a higher precision computation requiring about 30
decimal digits'. Moreover, the problems associated with the
level of precision become especially serious in the derivative
approach of polarography®?, where evaluations of current
derivatives include subtraction involving two terms of com-
parable magnitude, hence generating severe round-off er-
rors. The error becomes a serious matter in a progressive
manner as the order of differentiation increases.

The functional form of exp(xderfc(x) occurs frequently as
a solution or as a part of a solution for current expressions of
many electrochemical boundary value problems whenever
diffusion is coupled with a slower chemical or elec-
trochemical kinetic step®. This is true regardless of the me-
thods employed*® such methods include po-
larography/voltammetry, chronoamperometry, and chro-
nocoulometry. One of the simplest and most popular ways to
evaluate the function is based on Hasting’s rational approx-
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imations of the error function®’. However, the earlier ra-
tional approximations for erf(x) or erfc(x) are strictly limited
to single-precision with absolute errors being larger than
1x 1077 in general®. For more accurate evaluations of the
functions, more rigorous rational approximations with higher
degree polynomials® or approximations with several types of
truncated series expansions for the function'® have been
employed. Reports on the evaluation and analysis of the
function exp(x¥erfc(x) have previously appeared in several
journals'™%, Oldham’s report!? on an algorithm which is
suitable for a microcomputer is based on a combination of
several types of expansions including a continued fraction
expansion of the function. Commercial software packages
are also available for mainframe-computers'® and also for
microcomputers'®. However, all previous reports and the
commercial packages for the functions are strictly limited to
lower precision (double or below), and they are not suitable
for computations requiring high accuracy for the functional
values. Thus, the aims of this paper are (a) to present an ef-
fective algorithm for the evaluation of the function beyond
double-precision to quadruple-precision with 32 decimal sig-
nificant figures, and (b) to apply the algorithm to calculate
theoretical values of derivatives for a chemically coupled
electrode process (CE~type) then analyze the asymmetry
found in derivative peaks to extract thermodynamic and
kinetic information on the CE system. The algorithm is
primarily for main-frame computers where the word length
is larger (64 bits or above), but it will be suitable for future
microcomputers since microcomputers with 64-bit devices
do not seem too far away to advent.

Precision of experimental polarograms is limited typically
to a half precision (3-5 significant decimal figures) as in most
of other common scientific measurements. It has been well-
known that differentiation of such experimental data is a
noise-enhansing procedure by its nature; this raises a serious
question about how peractical the derivative approach can
be. However, recent microprocessor—controlled commercial
electrochemical instruments (from such companies as EG &
G Princeton Applied Research, Bioanalytical Systems, Inc.,
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IBM, and Cypress Systems, Inc.) or similar types of instru-
ments provide better signal-handling capabilities (such as
signal-averaging, signal-smoothing and differentiation); the
digital signal output enables one to obtain the derivative pola-
rogram/voltammogram with a good signal-to-noise (S/N)
ratio more easily than those obtained with analog inst-
ruments in earlier days. Examples of first and second
derivative polarograms obtained from such a digital instru-
ment (BAS 100) can be found from references (2) and (3), in
which the derivatives are generated from a numerical
differentiation coupled with a moving-window-average
method, although the derivatives are somewhat distorted
from true derivatives. The distortion of signals can be elim-
inated if the software is improved®. In this studies?, three
different types of digital-filtering methods (i.e., the mov-
ing-window-average method (MWM), the Savitzky-Golay
method (SGM, a floating least-squares method) and a fast
Fourier transformation method (FFT) are compared; the
SGM with a multiple pass appears to be more satisfactory
than the MWM in obtaining second derivatives because sig-
nal distortions with the SGM is much less than those with the
MWM. Details of the studies is precented elsewhere?.
Future development of algorithms for the smoothing/dif-
ferentiation method should yield noise-free third derivatives
if noises are not too high (noises being less than 1% of a
signal).

Methods

The evaluations of the function are based on the three
types of series expansions of the function which have been
commonly used'® for more rigorous treatments of the func-
tion. It utilizes a power series expansion for lower values of
arguments, an asymptotic expansion for higher values of ar-
guments, and an continued fractional expansion for mode-
rate to higher values of the argument. In principle, the algori-
thms are similar to those used to evaluate the series to lower
precision. However, the range of valid arguments for the
three forms of expansions for required precision, and the ex-
tent of summations or inclusions of fractional terms for the
expansions should be very different from those for lower
precisions.

The power series for smaller arguments!® is

exp(x®)erfc(x)
=exp(x®)[1-2/n'"?)exp(— x?)
L 2" -3 - @ntD) ]
=exp(x®) = (2/x"*)x+(2/3)x° +(4/15)x*
+(8/105)x" +---] (1
The asymptotic expansion for larger arguments!” 1° is
exp(x)erfc(x)
=[x 2] & (@n—D1 (—22°))
=[1/(x' 01 —1/(2x*)+3/(4x*)—15/(8x*)
+105/(16x%)—---] (2)
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Table 1. Number of Terms Required in Each Expansion to Meet
the Precision at Selected Values of the Argument

Precision x=1.5 x=6.0 x=10.0

(Digits) Eqn. (1) 3 @ @ 3 @ 1 3 @
Half (3-4) 3 12 — 108 3 3 — 3 3
Single (7-8) 17 32 — 115 8 12 — 4 5
Double (16) 25 105 — 129 14 35 — 10 11
Triple (24) 30 193 — 130 26 — — 16 23
Quadruple (32) 38 374 — 130 40 — — 24 41

The expression for the continued fraction expansion'®is

@/x)t 1 2 3 \
2%+ 2V x4+ 2V x4 2‘/’x+m(3'

exp(x?)erfc(x)=

First, the efficiency of the three equations for the evalua-
tion of the functions at the required precisions are examined
in order to find a best algorithm that can minimize CPU time.
This is done by checking how many terms are necessary for
the evaluation at a requried precision level for each expan-
sion at selected values of the argument. Typical results at
several selected values of the arguments are summarized in
Table 1. As in the case for lower precision, eqn. (1) is most
effective at a small argument (x = 1.5) for higher precision as
well. For example, eqn. (1) is approximately 10 times faster
than eqn. (3) for quadruple precision since it needed to sum
only the first 38 terms to reach the required precision with
eqn. (1) as compared to needing the first 374 terms with the
eqn. (3). Eqn (2) is totally inadequate to use at x=1.5. At a
moderate value of argument (x=6.0), eqn. (1) is the most in-
efficient because it needed as many as 108 terms just to at-
tain half precision, although the required number of terms
for higher precision does not increase very rapidly (e.g., 130
terms for quadruple precision). Equations (3) and (2) are com-
parably good for lower precision at x = 6.0; however, only the
continued fractional expansion (egn. (3)) is a viable expres-
sion at higher precisions for x=6.0. At this value of x, the
asymptotic expansion (eqn.(2)) is of no use for quadru-
ple-precision, because the smallest absolute value of a term
in the expansion never reaches 107 which is the error for
the precision. At larger values of the argument (x = 10), both
eqns. (2) and (3) are comparably efficient at levels of all preci-
sion, while eqn. (1) is totally unsatisfactory at any precision.

Based on analyses which are similar to those above,
ranges of arguments for which each equation can be effec-
tively handled with the fewest terms for the various levels of
precision are searched, and the results are given in Table 2.
The values at the limits of the ranges of the argument are
chosen so that number of terms included in both equations
become comparable. For example, to triple-precision, both
egns (1) and (3) require 59 terms for x = 3.0; therefore x= 3.0
defines the range limit when determining which equation to
choose. All other range limits were determined based on the
similar criteria. Eqn. (3) is not effective at moderate or large
values of the argument. On the other hand, eqn. {2) cannot be
used for high precision at moderate values of the argument
(5<x<8.6). Eqn. (2), however, is as effective as the eqn. (3)
for larger values of the argument at any level of precision.
The numbers in parentheses in Table 2 are the maximum
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Table 2. Ranges of the Argument for which Each Equation is Effi-
cient for the Evaluation of the Function at the Stated Level of Preci-
sion. The Maximum Number of Terms Required at Particular
Levels of Precision in Each Expansion is Given in Parentheses

Precision Relative Eqgn. (1) Eqn. (3) Eqn. (2)
(# digits) Error  Power Series Fractional Asymptotic
Half (3-4) 10-3-10¢ 0<x<15 15<x 3.5<x
(13) (12) (12)
Single (7-8) 1077-10-8  0<x<2.0 2.0<x 4.5<x
(24) (21) (20)
Double (16) 10-16 0<x<2.5 2.5<x 8.5<x
(40 (40) (14)
Triple (24) 10-24 0<x<3.0 3.0<x 10<x
(59 (59) (23)
Quadruple 10732 0<x<3.5 3.5<x 20<x
(32) (74 (82) (19

number of terms used in the expansion for the given ranges
of the argument at the particular levels of precision. Values
of the function are computed with an algorithm based on
Table 2.

15
i

0.

i

(NORMAL 1ZED)
0.50

.25
i

I
[

00

18.00
i

A

s voLT™!
12.00

II
a.00

0.00

0. 05 0.00 .08 o—lmo .15 -0.20 .28
(€ - €°) 7/ voLTs

Bull. Korean Chem. Soc., Vol. 11, No. 6, 1990 499

Typical results are presented in the following to 32 digits
at several selected values of the argument ranging widely
from 107° to 10*19,

X exp(xerfc(x)

10-1¢ : 0.99999999988716208330044874260963

10-5  : 0.99998871630832829262648294464597

1071 : 0.89645697996912664193188374864404

1 : 0.42758357615580700441075034449057

2 : 0.25539567631050574386508858091080

10 1 0.56140992743822585857517387220468 x 107!
10+5 : 0.56418958351954680777492305908892 x 10-5
10+10 : 0.56418964132077555819267566199529 x 10-10

The calculations described here were carried out on an IBM
4381/3090 with VM/CMS operating system with an extend-
ed precision (32 digits) mode. Plotting of the current-poten-
tial curves and their derivatives (Figure 1, 2, and 4) are ac-
complished by using the FPS plotting software with a Zeta
836 high performance digital plotter (Nicolet). The three-di-
mensional graphs (Figure 3) are generated with a software
Surfer (Version 3.00, Golden Software).
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Figure 1. (A) Normalized current and (B) its first derivative vs. potential curves for a C,E, process with K,,=103, k=10+7, n=2, and
=298 K. Dots represent the results from single-precision computation; solid lines represent result from double-precision computation. (C)
The second derivative and (D) the third derivative of the normalized current vs. potential curves for the C,E, process: dots represents results
from double-precision computation, and solid lines represent quadruple-precision results. Data are presented in a potential range from +0.01
V to -0.25 V. Data from the lower precision calculations in the anodic end (+0.05 to +0.01 V) of the potentials are not presented in the
figures; but those data, with value outside the plotting range, are the worst in fact in terms of error.
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Figure 2. (A) The Normalized current, (B) their first, (C) second, and (D) third derivative at various values of the forward rate constant (£ at
K, =10-* for the CE-type of electrode process; ke=10"1s71(a), 1072 (b), 10-3 (c), 10~4(d), and 10-5(e). Calculated for 7=298 K, t=1.0 s, and

n=1.

Results and Applications

Evaluation of the function with above method is applied to
the theoretical computation for the current-potential rela-
tionship and its derivatives for a chemically-coupled elec-
trode process. A reversible electron transfer reaction coupl-
ed with a prior chemical equilibrium (i.e., C,E, type electrode
process) can be represented as follows:

Y ]I:J Keo=[Ol/[Y]=F,/k,(in solution) (4)
23
O+ne——> R Nemnstian (at the electrode) {5)

Current () as a function of an applied potential (£) for this
system under a linear diffusion condition can be given by the
following equations (5, 18):

1= zd[(ﬂ tKeq k.r)] 72exp {Keg k(1 + €)/Keo) t}

erfc {(Keokr)' (14 €)/ Koo'} ] (6)
where, i;=nFAD'*C/(xt)'? {7)
e=expl(nF/ RT)(E—E, _,)] (8)

F is the Faraday constant, A is an area of an electrode sur-
face, D is the diffusion coefficient of the species (J, C is the

bulk concentration of Y and (), ¢is the time at which the cur-
rent is sampled after application of the potential, and E,is
the reversible polarographic half-wave potential of (). Ex-
pressions for the current can be simplified by putting

x=(Keakf)l/z[(1+ e)/1<e<1]tl 72 (9)
Then, =#l[(z 8 *(Keqk,)' " explx?) erfc(x)] {10

An analytical differentiation of eqn. (10) with respect to the
applied potential (E) gives

v =15(nF/RTX2k, e [(1+ € /Koe)i—1] 11

Further differentiations of eqn. (11) yields second and third
derivatives

1"=14(mF/RTY 2k, HE1+ € /K.o)i
+RT/nF(Q+ € /K.q)7 —1] 12
17 =14(nF/RTY 2k He[(14+4€ /Keo)i+(QRT/nF)
(14+2€ /K. )7 +(RT/nF)P(1+ € /Keo)i” —1] 13

From the expressions, current and its derivatives are cal-
culated with values of K, =107 /,=10"7, n=2 and 7'= 298
K at various levels of precision. Comparison of the results
from single- and quadruple-precisions are given in Figure 1
for the original current (A) and its first derivative (B). Solid
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Figure 3. Three-dimensional plots of (A) the normalized current, (B) their first, (C) second, and (D) third derivatives as a function of potential
and forward rate constant (k3 at K, = 10-4. The perspectives of the second (C) and third (D) derivatives are different from those of the zeroth
(A) and first (B) derivatives, and it was chosen for a better view of the valleys present in the second and the third derivaties. Conditions are

same as in Figure 3.

lines are from the quadruple-precision computation, and
dots are from the single-precision. There are not any signifi-
cant differences in the original currents (Figure 1A) for the
results using the two levels of precision. However, the sin-
gle-precision computation did not produce a satisfactory
result for the first derivative of the anodic half of the peak
(Figure 1B). The single-precision computations is totally
unable to produce a satisfactoy second and third derivatives.
In other words, the single-precision computation vielded er-
roneous results for the first, second and third derivatives
when r>800, ¥>20, and x>11, respectively. With a
double-precision computation the second and third deri-
vatives become erroneous for x>8,000 and x>300 respec-
tively, which is usually the case when larger values of %, is
employed in the anodic end of the potential range. It should
be pointed out that errors arise from the terms inside the
brackets in eqn. (11)-(13), which inevitably involve
round-offs during the subtractions. Any dots with values
outside the plotting scales (for example, 0.0-24.0 for Figure
1B) on y-axis of the figures are forced to be located at the rim
of the figure boxes for the calculation with lower precisions.
Therefore, the actual errors are much larger than those

which appear in the figures. In general, the more anodic
(positive) the potentials are, the larger the errors are,
although it does not appear so from the figure; namely, er-
rors appear largest in the middle (-0.01 to -0.04 V) of the
anodic side of the potential range. This is because data are
presented only in the potential range but from +0.01 to
~0.25 V, not from +0.05to -0.25 V. It looks that it is er-
ror—free in the range from +0.05 V to +0.01 V; but, in fact,
this anodic end is the worst range in terms of error. Figure
1C and 1D depict the second and the third derivatives under
the same conditions at two levels of precision. Solid lines are
from the quadruple-precision computation and dots are from
a double—precision computation for the same system. Please
note the heavy scattering of the points at the anodic branches
of the two curves. As the system becomes relatively slower
(k,<10*%), the errors due to the use of lower precision dimi-
nish. The evaluation is not successful with the dou-
ble-precision especially in the anodic branch of the third
derivative because the values of the argument of the function
in the potential range become so large (x>500). A very
similar type of the error for derivative-potential curves is
also observed with another kinetic system?, ie, a
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Figure 4. (A) Normalized current-potential curves, (B) its first, (C) second, and (D) third derivatives for a reversible electron transfer reaction
(solid lines) and for the CE-type reaction (dots). Graphic representations for various parameters are also given. Potentials are with respect to
the formal potential, £, hence E . Calculated for 7'= 298 K, and ¢= 1.0 sec.

guasi-reversible process with higher values of the transfer
coefficient (e >0.8): the errors for this system can also be cor-
rected by using the high precision level computation. Details
of the study on the quasi-reversible and irreversible systems
will be presented elsewhere®.,

The current as a function of the potential and the forward
rate constant (%) at a given value of the equilibrium constant
(K, = 107% for the homogeneous chemical step are depicted
in Figure 2. A three-dimensional view of the graphs are pre-
sented in Figure 3 for a better overview of picture. The deri-
vatives can be analyzed in terms of various parameters as de-
fined in Figure 4. The parameters defined are various
peak-potentials (E£,'s), peak-heights (¢,’s), and half-peak
widths (W,,’s): the numeric superscripts in the parameters
stands for an order of the differentiation, while the alphabetic
superscripts (¢, m, and ¢) stand for anodic, middle, and
cathodic, respectively. Close examinations of the derivatives
reveals asymmetry associated with the peaks for the CE sys-
tem. The presence of the asymmetry is not too apparent in
the zeroth (Figure 2A and 3A), first (F igure 2B and 3B), and
second derivatives (Figure 2C and 3C): but it is readily
noticeble in the third derivative (Figure 2D and 3D), namely,
the anodic-peak-currents (%) are higher than the
cathodic-peak-currents ( 1‘2‘). The analysis of lower order (the
first and second) derivatives for the C,E, process is already
presented elsewhere®, In this work, analysis of the third
derivative will be presented bacause the asymmetry found
in the third order derivative is more pronounced and more

sensitive to kinetics than that found in the second- and
lower-order derivatives.

Analysis of Peak-Potentials and Their Separations.
Figure 5A shows a plot of three peak-potentials (E}, Er
and Ef,‘) of the third derivatives as a function of k;at the two
different values of K, (107 and 10™). All three peak-poten-
tials shift towards positive direction as the value of the for-
ward rate constant increases, which is the same trend as
observed for the peak-potential of the first and second
derivatives. Separation of the peak-potentials, (Eg”—
E9(EF-E™, and (E}™-EY), are presented in Figure 5B. As
the forward rate constant of the prior chemical step becomes
smaller, they decreases from the values of the simple reversi-
ble electrode process. (E3”—E§‘) decreases from 118 mV to 90
mV exhibiting most changes (28 mV), while (Ex-E;")
decreases from 59 mV to 51mV exhibiting least changes (8
mV). (Eg"‘—Eff) decreases from 59 mV to 41 mV with a net
change of 18 mV. It should be noted that the change
associated with the anodic branch (E;™-E3) is more sensitive
to than that with the cathodic branch (Eg"‘—Eg‘).

Analysis of Peak—Heightp. Three peak-heights (5%,
,'2'", and f;‘) for the third derivatives are normalized with

respect to values of three peak-heights for the reversible
process, then plotted against log(#) in Figure 6A. All three
peak-heights decreases as the forward rate constant de-
creases for all values of K,, which is an analogous behavior
to that of the second and first derivatives. The normalized an-
odic-peak-heights are always larger than the cathodic ones.
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Figure 7. Effect of the forward rate constant, k5, (A) on the anodic,
middle, and cathodic half-peak-widths (W3, Wi, and W%‘) of the
third derivative, and (B) on their counterparts normalized against
their reversible values at the two different values of the equilibrium
constant. Conditions are same as in Figure 5.

Therefore, the ratio of the anodic-to-cathodic peak-heights
are always larger than 1. Three ratio of the peak-heights
(namely, 5523, 515", and i37/i)) as a function of /, are given
in Figure 6B for the two values of the equilibrium constant.
As k, decreases, the ratio of the anodic-to-cathodic
peak-height increases from the reversible value of 1.0 to
1.35: this 35% change the ratio is substantial enhancement
from 25% change in the ratio observed from the second deri-
vative at the same condition®. It is interesting to note that the
ratio of the anodic—-to-middle peak-height increases from
the reversible value of (.32 while that of the catho-
dic-to-middle peak-height decreases.

Analysis of Half-Peak-Widths. Absolute value of
three half-peak-widths (W¥, Wi, and W) for the third
derivatives as a function of log(t) is presented in Figure 7A.
All three peaks become sharper’as k, decreases. The anodic
(W59 and cathodic (W3) half-peak-width decrease from 54
mV to 42.5 mV and 50 mV respectively, while the middle
half-peak-widths (W™ decreases from 41.2 mV to 35 mV.
The anodic-half-peak-widths become sharper than the
cathodic ones. The absolute values of the half-peak-widths
are normalized against those of their reversible counterparts,
and the results are given in Figure 7B. The anodic half-
peak-width exhibits most changes (by 22%), while the
cathodic half-peak-width produce least changes (only by
8%) from the reversible value of unity. The middle one
shows about 15% decrease. The various ratios of the
half-peak-widths (i.c., W/ W3¢, Wi/ Wi, and Wi/ Wi
are presented in Figure 8. As k, decrease, the catho-
dic-to-anodic half-peak-width increases to a limiting value
of 1.17 from 1.00 (the reversible value). The anodic-



504  Bull. Korean Chem. Soc., Vol. 11, No. 6, 1990

3¢ Im
1.4 W2/ Wis2
13}
£
3
7
Ja Im
3 W2 Y2
< 12
l -
3
I 3
- < Ja
5 Wir2/Wip2
2
°
@
1l
10~ ——m - —
i i 1 1 1 1 1 1
-3 -2 -1 ¢ 1 2 3 5 6

log k'

Figure 8. Effect of the forward rate constant, ks, on the various
ratios of half-peak-widths (Wi¢/ Wi, Wi/ Wi, and W&/ Wi™) at
two different values of the equilibrium constant. Conditions are
same as in Figure 5.

to-middle half-peak-width decreases to 1.21 from 1.31,
while cathodic-to-anodic half-peak-width increase 1.43
from 1.31 that is the value for the reversible process. It
should be pointed that relative changes in the cathodic-
to-anodic half-peak-width for the third derivative is more
than that for the second derivative although their behavior is
similar.

In general, the effect due to the coupled kinetics on the para-
meters ave more sensitively vetlected in the thivd derivative than
in the lower —ovder (mamelv, second and first) derivatives. As
observed in the second derivative, all parameters associated
with the anodic peak (E¥, /%, and Wi) are more strongly in-
fluenced by the preceeding homogene ous chemical step than
their cathodic counterparts (Ez‘, z'g‘. and W%). Comparisons
of various diagnostic parameters from all derivatives are
made and summarized in Table 3 for the reversible, the
CE-type, and EC-type processes®®. Values of many
parameters (such as ratios of peak-heights, and ratios of
half-peak-widths) of the CE-type process change from the
reversible values in opposite direction to the values for the
EC-type process, although some parameters (such as peak-
separations) changes in a same direction for both CE and EC
processes. In other words, the anodic-to-cathodic peak-
height ratio for the CE-type process is less than one (the
reversible value), while that for EC-type process is larger
than one. However, a peak separation (EZ"—E;"), exhibits a
same behavior for both CE- and EC- type processes becom-
ing less than 118/n mV which is for the reversible process.
Therefore, all the peak-current ratios and half-
peak-width ratios can be used as diagnostic parameters for
distinguishing a CE from an EC mechanism because they ex-

Myung-Hoon Kim et al.

Table 3. Comparison of Values of Various Diagnostic Parameters
for the Reversible, CE and EC Processes for 7=298 K, and =1.0
sec

Parameters Reversible C,E, Process  E,C; Process
Original current
E-E, =0.0mV <0.0 mV >0.0 mV
Ey-Es, =56.4nmV  <564nmV <564 mV
1st derivative
E,-E° =0.0 mV <0.0 mV >0.0 mV
ifig =97 <9.7 >9.7
W, =90.5mmV  <90.5nmV  <90.5n mV
WYW, =10 <1.0 >1.00
2nd derivative
E2-E% =68.0/nmV  <68.0/n mV
e =10 >1.0 <1.00
whe- W =1.00 <1.0 >1.00
3rd derivative
EY-EY =118nmV  <118mmV  <118nmV
EX-E3m =59/n mV <59/n mV <5Y9/n mV
E3m-E¥ =59/n mV <59m mV <5%n mV
i3 =1.00 >1.00 <1.00
-3 =0.32 >0.32 <0.32
Wi-wi =0.32 <0.32 >0.32
wg-war  =1.00 <1.00 >1.00
Wi Wi =131 <1.31 >1.31
E2-E2 =131 >1.31 <1.31

hibits opposite behaviors, while the various peak-separations
cannot be used for the diagnostic purpose because they
change in a same manner.
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Enhanced Electrogenerated Chemllummescence of Tris (2,2’ -bipyridyl)

Ruthenium (II)-S, O

~ System by Sodium Dodecyl Sulfate

Sung Chul Kang, Sooil Oh, and Kang-Jin Kim*

Department of Chemistry, Korea University, Seoul 136 - 701. Received April 25, 1990

The electrochemical reduction and electrogenerated chemiluminescence (ECL) of Ru(bpy)s?*-S,0g?" in CH3CN-H,0 solu-
tion were studied in the presence of sodium dodecyl sulfate (SDS) as an anionic surfactant. SDS enhanced the ECL and the
fluorescence intensities and lengthened the duration of ECL due to the solubilization of reactants and possibly to the stabiliza-

tion of ECL intermediates in the SDS micellar environment.

Introduction

Interests in the electrogenerated chemiluminescence
(ECL) of tris(2,2’-bipyridyl) ruthenium (I(Ru(bpy),®*) in
aqueous or acetonitrile—water solutions have been increasing
rapidly since Ru(bpy),?* as an ECL label can be used to
determine low concentrations of biologically important com-
pounds 12 In particular, the ECL mechanism of Ru(bpy),**
-S,0,% system in acetonitrile-water solution estabilished
recently by W hlte and Bard are based on the following reac-
tion sequence.

Ru(byp):*+e- — Ru(bby)s 1)
Ru(bby); 45,02~ — Ru(bpy):*+S0, +S0% 2)
Ru(bpy): +S0O; - Ru(bpy)i**+S0i- (3)

Because Ru(bpy);* is unstable in aqueous solutions and
S,04 has a low solubility in CHZCN solutions®, the
CH,CN-H,0 mixed solutions are used to produce intense
ECL emission.

Electrogenerated reactive intermediates are often stabi-
lized in micellar media on the reductive electrochemical
system. For example, Saveant ¢f al.* have reported a remar-
kable stabilization of the electrogenerated anion radical of
phthalonitrile in the presence of cationic micelles and sug-
gested that the observed 250 fold decrease in the rate of pro-

tonation of the anion radical was due to its association with
the positively charged micelles. On the other hand, Blount ¢t
«l.” found that anionic micelles in the presence of LiCl elec-
trolvte were capable of stabilizing the nitrobenzen anion
radical to the point where it become detectable by cyclic
voltammetry at 50 mV/sec.

Recently, Ouyang and Bard® examined the oxidative
electrochemistry and ECL of ()s(bpy)32*. and suggested that
Os(bpy),®* interacted most strongly with anionic miceiles,
and both the electrochemical response and ECL in the pre-
sence of oxalate were suppressed. Bard and coworkers” had
previously shown that the anionic micelles associated more
strongly with methylviologen cationic radical(MV *) than the
dication (MV2*) form and Ru(bpy)gz* is bound into Nafion
more strongly than Ru(bpy),3+. Their results were explained
by the hydrophobic interactions between the given substrate
and the micellar hydrocarbon core or the nonpolar regions of
Nafion.

However, mlcellar Systerns have not been utilized for the
ECL of Ru(bpy)y”*~S; ,0¢ system, although there are some
reports Concernmg the CL improvements of lucigenin in
micelle solutions.®® Therefore, in this paper we attempt to
describe the effect of sodium dodecyl sulfate (S1)S) as an
anionic surfactant for the purpose of enhancing the ECL effi-
ciency of Ru(bpy);2*-S,04" system. Possible causes of the
enhancement are discussed.



