Kinetics and Mechanism of the Aminolysis of Diphenyl Phosphinic Chloride with Anilines

Md. Ehtesham Ul Hoque and Hai Whang Lee*

Department of Chemistry, Inha University, Incheon 402-751, Korea. *E-mail: hwlee@inha.ac.kr Received April 23, 2007

The aminolyses of diphenyl phosphinic chloride (1) with substituted anilines in acetonitrile at 55.0 °C are investigated kinetically. Large Hammett ρ_X ($\rho_{nuc} = -4.78$) and Brönsted β_X ($\beta_{nuc} = 1.69$) values suggest extensive bond formation in the transition state. The primary normal kinetic isotope effects ($k_H/k_D = 1.42-1.82$) involving deuterated aniline (XC₆H₄ND₂) nucleophiles indicate that hydrogen bonding results in partial deprotonation of the aniline nucleophile in the rate-limiting step. The faster rate of diphenyl phosphinic chloride (1) than diphenyl chlorophosphate (2) is rationalized by the large proportion of a frontside attack in the reaction of 1. These results are consistent with a concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state.

Key Words : Anilinolysis of diphenyl phosphinic chloride, Frontside nucleophilic attack, Deuterium kinetic isotope effect

Introduction

Nucleophilic substitution at a phosphoryl (P=O) or thiophosphoryl (P=S) center generally proceeds either through stepwise mechanism with a trigonal bipyramidal pentacoordinate (TBP-5C) intermediate (upper route) or an $S_N 2$ mechanism with transition state (TS) (lower route), where the attacking and leaving groups occupy apical positions, *i.e.*, backside nucleophilic attack toward the leaving group.¹

Stereochemical studies of the displacement of exocyclic groups at phosphorus from a variety of dioxaphosphorinane derivatives show that front- or back- side nucleophilic attack leads to retention or inversion of configuration depending on the nature of the nucleophile, leaving group, solvent, other ionic species present, and other heteroatoms in the sixmembered ring.²

In previous work, we studied several phosphoryl and thiophosphoryl transfer reactions kinetically and theoretically.³ The concerted mechanism with a frontside nucleophilic attack was proposed based on the ρ_X , β_X , β_Z and the especially large negative ρ_{XZ} (= –1.98) value for more basic phenolate groups (Z = 4-Cl, 3-Cl, and 3-CN) and less basic pyridines (X = 3-Cl, 3-CH₃CO, 4-CH₃CO, 3-CN, and 4-CN) in the reactions of Z-aryl bis(4-methoxyphenyl) phosphates, (4-MeOC₆H₄O)₂P(=O)OC₆H₄Z, with pyridines, XC₅H₄N, in acetonitrile.^{3d} For the pyridinolysis of aryl phenyl isothiocyanophosphates, (YC₆H₄O)(C₆H₅O)P(=O)NCS, in acetonitrile, the biphasic Hammett (log*k*₂ *vs.* σ_X) and Brönsted [log*k*₂ *vs.* p*K*_a(X)] plots were interpreted as a frontside attack TS for more basic pyridines (X = 4-MeO, 4-Me, 3-Me, H, and 3-C₆H₅) and backside attack TS for less basic pyridines (X = 3-CH₃CO, 3-Cl, 4-CH₃CO, and 4-CN).^{3e} The partial participation of a frontside nucleophilic attack concerted mechanism was proposed for the anilinolysis of aryl phenyl (and 4-chlorophenyl) chlorothiophosphates in acetonitrile.^{3f}

To clarify the phosphoryl transfer mechanism, as well as to compare the reactivity of diphenyl chlorophosphate $(2)^{3a}$ and diphenyl chlorothiophosphate $(3)^{3f}$ here we investigate the aminolysis of diphenyl phosphinic chloride (1) with substituted anilines and deuterated anilines (XC₆H₄NH₂ and XC₆H₄ND₂) in acetonitrile at 55.0 °C.

$$C_{6}H_{5} \xrightarrow{P}{} Cl + 2XC_{6}H_{4}NL_{2} \xrightarrow{MeCN}$$

$$1 \qquad (2)$$

$$C_{6}H_{5} \xrightarrow{P}{} NLC_{6}H_{4}X + XC_{6}H_{4}NL_{3}Cl$$

$$C_{6}H_{5} \xrightarrow{P}{} NLC_{6}H_{4}X + XC_{6}H_{4}NL_{3}Cl$$

L = H or D, X = 4-CH₃O, 4-CH₃, 3-CH₃, H, 3-CH₃O, 4-Cl, 3-Cl

Table 1. Second-Order Rate Constants, $k_{\rm H}$ and $k_{\rm D}$ (× 10⁴/M⁻¹s⁻¹), of the Aminolysis of Diphenyl Phosphinic Chloride (1) with XC₆H₄NH₂ and XC₆H₄ND₂ in Acetonitrile at 55.0 °C

Х	$k_{ m H}{}^a$	$k_{\mathrm{D}}{}^{b}$	$k_{ m H}/k_{ m D}$
4-CH ₃ O	524 ± 14^c	288 ± 7.9	1.82 ± 0.070
4-CH ₃	156 ± 3.2	86.3 ± 1.4	1.81 ± 0.047
3-CH ₃	33.7 ± 1.0	18.7 ± 0.56	1.80 ± 0.076
Н	17.3 ± 0.54	9.69 ± 0.33	1.79 ± 0.082
3-CH ₃ O	3.13 ± 0.12	2.20 ± 0.11	1.42 ± 0.090
4-Cl	1.87 ± 0.077	1.32 ± 0.041	1.42 ± 0.073
3-Cl	0.476 ± 0.018	0.335 ± 0.012	1.42 ± 0.074

^{*a*}Correlation coefficients (r) were better than 0.997. ^{*b*}r \ge 0.997. ^{*c*}Standard deviation.

Results and Discussion

The second-order rate constants, $k_{\rm H}$, for the reactions were obtained as the slope of $k_{\rm obsd}$ (pseudo-first-order rate constant) against aniline concentration, [An],

$$k_{\rm obsd} = k_0 + k_{\rm H}[{\rm An}] \tag{3}$$

where the intercept, k_0 , was negligible in all cases. No thirdorder kinetics were observed and no complications were found in the determination of k_{obsd} . The k_H values are summarized in Table 1, together with k_D values involving deuterated anilines (XC₆H₄ND₂).

The changes in rate observed by varying substituents in the nucleophiles were consistent with the nature of a typical nucleophilic substitution reaction, *i.e.*, the stronger the nucleophile, the faster the rate. Figure 1 shows the nonbonding orbital (NBO) charges and rate ratios of the anilinolysis of **1**, **2**, and **3**. The NBO charges of the reaction center P are 1.844 in **1** and 2.230 in **2**, which are consistent with the inductive effects of Ph ($\sigma_{\rm I} = 0.12$)⁵ and PhO ($\sigma_{\rm I} = 0.40$)⁵ ligands. Solely considering the positive charge of the reaction center P atom, the anilinolysis rate of **2** should be faster than that of **1**. However, the observed rate ratio of $k_{\rm H}$ (**1**)/ $k_{\rm H}$ (**2**) = 1.9 is opposite to expectation, implying that the reaction rate does not depend only on the positive charge of the reaction center P.

Two phenyl groups are bonded to the reaction center P atom in **1**, while an intervening oxygen atom is located between the reaction center P and the phenyl group in **2**. As a result, the steric hindrance in **1** would be much larger than that in **2** when the nucleophile attacks opposite the Cl leaving group, *i.e.*, backside nucleophilic attack. This result strongly suggests that the reaction of **1** with anilines does not simply proceed by a backside nucleophilic attack. The slower rate of **3** (P=S system) than those of **1** and **2** (P=O system) is attributed to several causes, the so-called "thio effect", which is mainly the electronegativity difference between O and S.^{1c,6}

The $pK_a(X)$ values in H₂O are used to obtain the Brönsted β_X value as shown in Figure 2. The $\Delta pK_a = pK_a(MeCN) - pK_a(H_2O)$ values for structurally similar amines are nearly constant, so determination of β_X by plotting log $k_H(MeCN)$ against $pK_a(H_2O)$ is probably justified.⁷ The magnitudes of Hammett ρ_X (-4.78) and Brönsted β_X (1.69) values are both large, suggesting extensive bond formation in the TS. The obtained β_X value is considerably larger than those of other phosphoryl and thiophosphoryl reactions in which the reactions proceed through a concerted mechanism. The β_X values of the reactions of (i) 4-nitrophenyl dimethyl phosphinothioate with phenoxides,⁸ (iii) 4-nitrophenyl diphenyl

Figure 1. The B3LYP/6-311+ $G(d,p)^4$ geometries and nonbonding orbital (NBO) charges of 1, 2, ^{3a} and 3.^{3f} The relative rate ratios are for unsubstituted aniline ($C_6H_5NH_2$).

Figure 2. Brönsted plots of the aminolysis of diphenyl phosphinic chloride (1) with $XC_6H_4NH_2$ (\blacksquare) and $XC_6H_4ND_2$ (\bigcirc) in acetonitrile at 55.0 °C. The *pK*_a values of $XC_6H_4ND_2$ are assumed to be the same as the *pK*_a values of $XC_6H_4NH_2$ in water.

phosphinate with phenoxides,⁹ (iv) isoquinolino-*N*-phosphonate with pyridines,¹⁰ and (v) *O*,*O*-dimethyl *O*-(3-methyl-4nitrophenyl) phosphorothioate with phenoxides^{6f} are 0.47, 0.53, 0.46, 0.15, and 0.49, respectively. The β_X (and ρ_X) values of the anilinolysis of **2** and **3** are 1.35 (and 3.74)^{3a} and 1.36 (and 3.88),^{3f} respectively, somewhat smaller than that of **1**. The especially large ρ_X and β_X values seem to be characteristic of the anilinolysis of **1-3**, with the Cl leaving group, in acetonitrile.

A backside nucleophilic attack concerted mechanism with a late, product-like TS in the anilinolysis of 2 was proposed based on large ρ_X (and β_X), large negative cross-interaction constant¹¹ ($\rho_{XY} = -1.31$, where X is the substituent of the nucleophile and Y is the substituent of the substrate), and the secondary inverse kinetic isotope effects (KIEs; $k_{\rm H}/k_{\rm D} = 0.7$ -0.8) with deuterated aniline nucleophiles $(XC_6H_4ND_2)$.^{3a} In contrast, a partial frontside attack concerted mechanism through a hydrogen-bonded four-center type TS was suggested for the anilinolysis of 3 based on several reasons, mainly the primary KIEs, $k_{\rm H}/k_{\rm D} = 1.1-1.3$.^{3f} The KIEs with deuterated anilines are summarized in Table 1 (see also Table 2). As observed in the anilinolysis of 3, the $k_{\rm H}/k_{\rm D}$ values of **1** are all greater than unity, $k_{\rm H}/k_{\rm D} = 1.4$ -1.8, indicating that partial deprotonation of the aniline nucleophile occurs in the rate-limiting step by hydrogen bonding.

Two possible TS structures can be proposed: hydrogen bonding between the Cl leaving group and the hydrogen of the N-H(D) moiety (4) or between the polar oxygen in P=O and the hydrogen of the N-H(D) moiety in aniline (5).

Md. Ehtesham Ul Hoque and Hai Whang Lee

Buncel¹² and Um¹³ reported a four-membered TS (6) in the ethanolysis of the phosphinates, paraxon and parathion, caused by alkali metal ions. In such a model, the catalytic effect increases with increasing positive charge density of M^+ ions. The catalytic effect of the M^+

ions is stronger in a P=O than in a P=S system, due to the polarizable S atom. Positive charge development on the hydrogen of the N-H moiety in the TS would be much smaller than that of M⁺ ions, so hydrogen bonding involving the strong accepter P=O, TS **5**, is not feasible in the present work. Moreover, the secondary inverse KIE, $k_{\rm H}/k_{\rm D} < 1$, of the anilinolysis of **2** and primary normal KIE, $k_{\rm H}/k_{\rm D} > 1$, of the anilinolysis of **3** cannot be rationalized by TS **5**. Therefore, the possibility of TS **5** can be neglected in the present work.

When the aniline nucleophile attacks backside toward the Cl leaving group, the steric effect on the TS would be larger in **1** than in **3** due to the intervening oxygen atom between the reaction center P atom and phenyl group in **3** (see Figure 1). As a result, the proportion of frontside nucleophilic attack (TS **4**) would be greater in **1** than in **3**; therefore, the $k_{\rm H}/k_{\rm D}$ values of **1** (1.42-1.82) are larger than those of **3** (1.11-1.27). The faster rate of **1** than **2** could be rationalized by the large proportion of frontside attack in the reaction of **1**, where steric hindrance does not play an important role.

The obtained KIEs would be the sum of the primary KIE, $k_{\rm H}/k_{\rm D} > 1$, due to partial deprotonation as shown in TS **4**, and the secondary inverse KIE, $k_{\rm H}/k_{\rm D} < 1$, due to steric hindrance that increases the out-of-plane bending vibrational frequencies of N-H(D) bonds in the TS for a backside attack.¹⁶ As a result, the real primary KIE due to the hydrogen bond between the hydrogen of N-H(D) moiety and the Cl leaving group should be greater than the observed value.

When the frontside nucleophilic attack is major direction, greater deprotonation would occur with a greater bond formation, *i.e.*, the stronger nucleophile ($\partial \sigma_X < 0$) leads to a

Table 2. The $k_{\rm H}$ (× 10⁴/M⁻¹s⁻¹), ρ_X , β_X , and $k_{\rm H}/k_{\rm D}$ Values of the Reactions of (Ph)₂P(O)Cl (1), (PhO)₂P(O)Cl (2), and (PhO)₂P(S)Cl (3) with X-Anilines in Acetonitrile at 55.0 °C

Substrate	$k_{ m H}{}^a$	$- ho_{ ext{X}}{}^{b}$	$\beta_{X}{}^{c}$	$k_{ m H}/k_{ m D}$	ref.
1	17.3	$4.78^{d}(4.56)^{e}$	$1.69^{f}(1.62)^{g}$	1.42-1.82	This work
2	8.91	3.74	1.35	$0.71 \hbox{-} 0.77^h$	3(a)
3	1.01	3.88	1.36	$1.11 - 1.27^{i}$	3(f)

^{*a*}When X = H. ^{*b*}The σ values were taken from ref. 14. ^{*c*}The pK_a values were taken from ref. 15. ^{*d*}Calculated from $k_{\rm H}$ values. Correlation coefficient (r) = 0.992. ^{*c*}Calculated from $k_{\rm D}$ values. r = 0.991. ^{*f*}Calculated from $k_{\rm H}$ values. r = 0.993. ^{*g*}Calculated from $k_{\rm D}$ values. r = 0.993. ^{*h*}O.77 for X = 4-CH₃O, 0.75 for X = H, and 0.71 for X = 4-Cl. ^{*i*}1.27 for X = 4-CH₃O, 1.20 for X = H, and 1.11 for X = 4-Cl.

greater hydrogen bond formation. Then the observed primary KIE, $k_{\rm H}/k_{\rm D}$ values greater than unity, may be proportional to the degree of hydrogen bond formation and the expected sequence of the $k_{\rm H}/k_{\rm D}$ values is X = 4-MeO > 4-Me > 3-Me > H > 3-MeO > 4-Cl > 3-Cl, similar to the observed sequence, X = 4-MeO ≥ 4 -Me ≥ 3 -MeO ≈ 4 -Cl \approx 3-Cl. The observed sequence of the $k_{\rm H}/k_{\rm D}$ values in 3 shows the same tendency as in 1, X = 4-MeO > H > 4-Cl (footnote of Table 2).^{3f} When the backside nucleophilic attack is major direction, which leads to the secondary inverse KIEs, $k_{\rm H}/k_{\rm D} < 1$, more bond formation will result in smaller $k_{\rm H}/k_{\rm D}$ value. The observed sequence of the $k_{\rm H}/k_{\rm D}$ values in 2 is X = 4-MeO > H > 4-Cl, contrary to the expectations based on the backside nucleophilic attack (footnote of Table 2).^{3a} When the front and back side attack is comparable, the substituent effects of X on the KIEs would be complicated. The discrepancy between the expected and obtained substituent effects of X on the KIEs may be due to the proportion of front and back side nucleophilic attack, *i.e.*, more frontside attack results in greater $k_{\rm H}/k_{\rm D}$ value and more backside attack results in smaller $k_{\rm H}/k_{\rm D}$ value.

The larger magnitudes of ρ_x and β_x values of **1** (-4.78 and 1.69, respectively) compared to **2** (-3.74 and 1.35, respectively) and **3** (-3.88 and 1.36, respectively) suggest that **1** has a later, more product-like TS than **2** and **3**. The magnitudes of ρ_x and β_x values of **1** (-4.56 and 1.62, respectively) with deuterated anilines (XC₆H₄ND₂) are somewhat smaller than those with anilines (XC₆H₄NH₂), suggesting less sensitivity to substituent effect of deuterated anilines than of anilines.

Summary

The reactions of diphenyl phosphinic chloride (1) with Xanilines were studied kinetically in acetonitrile at 55.0 °C. When substituents in the nucleophiles were varied, the rate changes were consistent with the nature of a typical nucleophilic substitution reaction. Structure-reactivity relationship between 1, 2, and 3 was discussed based on NBO charges and steric effects. The primary normal KIEs ($k_H/k_D = 1.42$ -1.82) involving deuterated aniline (XC₆H₄ND₂) nucleophiles were obtained and were consistent with a partial frontside attack concerted mechanism through a hydrogen-bonded four-center type TS. The large magnitudes of ρ_X and β_X values of 1 (-4.78 and 1.69) suggest a late, product-like TS.

Experimental Section

Materials. Diphenyl phosphinic chloride, 98% (substrate), and HPLC grade acetonitrile (water content is less than 0.005%) were used for kinetic studies without further purification. Anilines were redistilled or recrystallized before use as previously described.¹⁷ Deuterated anilines were prepared by heating anilines with D₂O at 85 °C for 72 h and, after numerous attempts, were more than 98% deuterated, as confirmed by ¹H-NMR. **Kinetics Measurement.** Rates were measured conductometrically as described previously.³ For the present work, [substrate] = 1×10^{-3} M and [An] = 0.03-0.15 M were used. We tried at least five concentrations of anilines. Pseudo-firstorder rate constant values were the average of three runs, which were reproducible within $\pm 3\%$.

Product Analysis. Diphenyl phosphinic chloride was refluxed with excess anilines (XC₆H₄NH₂; X = 4-CH₃O, H,^{3f} 4-Cl) for more than 15 half-lives at 55.0 °C in acetonitrile, as described.^{3f} Analytical data of the products gave the following results:

(C₆H₅)₂P(=O)NH-C₆H₄-4-CH₃O.¹⁸ Purple Solid; mp 142-144 °C; IR (nujol mull) 3375 (NH), 3124 (C-H, aromatic), 2724 (CH₃), 1511, 1378 (P-C₆H₅), 1463 (CH₃-O), 1242 (C-O-C, Ar), 737 cm⁻¹ (P=O); ¹H NMR (400 MHz, DMSO-d₆) δ 3.67 (3H, s, CH₃O), 6.88 (2H, d, J = 8.8 Hz), 7.01 (2H, d, J = 8.8 Hz), 7.48-7.54 (6H, m, benzene), 7.76-7.81 (4H, m, benzene), 8.00 (1H, d, J = 11.6 Hz, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 55.2 (CH₃O), 114.0-154.2 (C=C, aromatic); ³¹P NMR (162 MHz, DMSO-d₆) δ 26.4 (1P, s, P=O); m/z, 323 (M⁺); Anal. Calcd for C₁₉H₁₈O₂NP: C, 70.6; H, 5.6; N, 4.3. Found: C, 70.9; H, 5.9; N, 4.0.

(C₆H₅)₂P(=O)NH-C₆H₅.^{3f,19} Yellowish Solid; mp 85-86 °C; IR (nujol mall) 3128 (NH), 3054, 1461, 1377, 725 cm⁻¹ (P=O); ¹H NMR (400 MHz, CDCl₃) δ 5.2 (1H, d, J = 11.6 Hz, NH), 6.9 (1H, t, J = 7.6 Hz), 7.0 (2H, d, J = 7.6 Hz), 7.1 (2H, t, J = 7.6 Hz), 7.4 (4H, m), 7.5 (2H, m), 7.8-7.9 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 118.3-140.2 (C=C, aromatic); ³¹P NMR (162 MHz, CDCl₃) δ 23.7 (s, 1P); m/z, 292 (M⁺); Anal. Calcd for C₁₈H₁₆ONP: C, 73.7; H, 5.5; N, 4.8. Found: C, 73.7; H, 5.7; N, 4.5.

(C₆H₅)₂P(=O)NH-C₆H₄-4-Cl.^{18b,20} Light-purple Solid; mp 180-182 °C; IR (nujol mull) 3179 (NH), 3089 (C-H, aromatic), 2723 (CH₃), 1594, 1378 (P-C₆H₄), 724 cm⁻¹ (P=O); ¹H NMR (400 MHz, DMSO-d₆) δ 7.05 (2H, d, J = 8.8 Hz), 7.16 (2H, d, J = 8.8 Hz), 7.48-7.57 (6H, m, benzene), 7.75-7.80 (4H, m, benzene), 8.40 (1H, d, J = 11.6 Hz, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 115.7-141.0 (C=C, aromatic); ³¹P NMR (162 MHz, DMSO-d₆) δ 27.1 (1P, s, P=O); m/z, 327 (M⁺); Anal. Calcd for C₁₈H₁₅ONPCI: C, 66.0; H, 4.6; N, 4.3. Found: C, 65.7; H, 4.7; N, 4.5.

Acknowledgement. This work was supported by a grant from KOSEF of Korea (R01-2004-000-10279-0).

References

 (a) Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268. (b) Humphry, T.; Forconi, M.; Williams, N. H.; Hengge, A. C. J. Am. Chem. Soc. 2004, 126, 11864. (c) Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703. (d) Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715. (e) Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597. (f) Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 7-8. (g) Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403, 451. (h) Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 2002, 489. (i) Reimschussel, W.; Mikolajczyk, M.; Tilk, H. S.; Gajl, M. Int. J. Chem. Kinet. 1980, 12, 979. (j) Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680. (k) Admiraal, S. J.; Herschlag, D. J. Am. Chem. Soc. 2000, 122, 2145. (l) Harger, M. J. P. Chem. Commun. 2005, 22, 2863. (m) Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49. (n) van Bochove, M. A.; Swart, M.; Bickelhaupt, M. J. Am. Chem. Soc. 2006, 128, 10738.

- (a) Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894. (b) Hall, C. D.; Inch, T. D. Tetrahedron 1980, 36, 2059.
- (a) Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans 2
 1999, 765. (b) Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem.
 2000, 65, 12. (c) Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. (d) Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. (e) Adhikary, K. K.; Lee, H.
 W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. (f) Hoque, M.
 E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, in press. (g) Lee, I.; Kim, C. K.; Li, H. G; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162.
- Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. *Ab Initio* Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
- 5. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287.
- (a) Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M.-D. J. Am. Chem. Soc. 1997, 119, 5477. (b) Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178. (c) Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61. (d) Holtz, K. M.; Catrina, I. E.; Hengge, A. C.; Kantrowitz, E. R. Biochemistry 2000, 39, 9451. (e) Liu, Y.; Gregersen, B. A.; Hengge, A. C.; York, D. M. Biochemistry 2006, 45, 10043. (f) Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324. (g) Oivanen, M.; Ora, M.; Lonnberg, H. Collect. Czech. Chem. Commun. 1996, 61, S-1. (h) Zhang, L.; Xie, D.; Xu, D.; Guo, H. J. Phys. Chem. A 2005, 109, 11295.
- (a) Ritchie, C. D. In *Solute-Solvent Interactions*; Coetzee, J. F.; Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Ch. 4. (b)

Coetzee, J. F. Prog. Phys. Org. Chem. **1967**, 4, 54. (c) Spillane, W. J.; Hogan, G; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 **1996**, 2099. (d) Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. **1997**, 62, 5780.

- Ba-Saif, S. A.; Waring, M. A.; Williams, A. J. Am. Chem. Soc. 1990, 112, 8115.
- Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890.
- 10. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591.
- (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317. (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57. (c) Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.
- (a) Onyido, I.; Albright, K.; Buncel, E. Org. Biomol. Chem. 2005, 3, 1468. (b) Buncel, E.; Albright, K.; Onyido, I. *ibid.* 2004, 2, 601.
- Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016.
- 14. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
- Streitwieser, A. Jr.; Heathcock, C. H. Introduction to Organic Chemistry, 3rd ed.; Macmillan publishing Co.: New York, 1989; p 693.
- Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1991, 335.
- Lee, I.; Lee, H. W.; Sohn, S. C.; Kim, C. H. *Tetrahedron* 1985, 41, 2635.
- (a) Fernandez, I.; Gomez, G. R.; Iglesias, M. J.; Ortiz, F. L.; Alvarez-Manzaneda, R. ARKIVOC (Gainesville, FL, United States) 2005, 9, 375. (b) Alajarin, M.; Lopez-Leonardo, C.; Llamas-Lorente, P. Tetrahedron Lett. 2001, 42, 1041.
- (a) Cristau, H.-J.; Jouanin, I.; Taillefer, M. J. Organometallic Chem. **1999**, 584, 68. (b) Priya, S.; Balakrishna, M. S.; Mobin, S. M. Polyhedron **2005**, 24, 1641.
- (a) Fenske, D.; Teichert, H.; Becher, H. J. Chemische Berichte 1976, 109, 363. (b) Zhmurova, I. N.; Kirsanov, A. V. Zhurnal Obshchei Khimii 1963, 33, 1015.

⁹⁴⁰ Bull. Korean Chem. Soc. 2007, Vol. 28, No. 6