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Carbon-carbon bond formation mediated by transition met-
als has been investigated as an important step in organic syn-
thesis.1 Metal-alkynyls, in particular, are of interest due to
the reactivity of the alkynyl group (M-Cα ≡ CβR).2 Addition
of an electrophile to the β-carbon of the alkynyl group of
alkynyl complexes is well-known to give metal-vinylidenes
which consequently lead a carbon-carbon bond formation
between the α-carbon of the vinylidene and the α-carbon of
alkenyl2a or terminal carbon of the π-allyl2b groups adjacent
to the vinylidene group.

In the course of our study on the electrophile-mediated
carbon-carbon bond formation with alkynyliridium complexes,3

we have unexpectedly found that proton initially attacks the
γ-carbon of the η1-allyl ligand in (η1-allyl)(alkynyl)iridium(III)
complexes and then a carbon-carbon bond is formed
between the β-carbon of the protonated η1-allyl group and
the α-carbon of the alkynyl group to produce 1,3-enynes.

The (η1-allyl)(alkynyl)iridium(III) complexes L3Ir(η1-
CH2CH = CHR)(C≡ C(p-C6H4Me))(Br) (2, R = Ph (a), H
(b), L3 = (CO)(PPh3)2)4 have been prepared from the oxida-
tive addition of allylic bromides (BrCH2CH = CHR) to the
four coordinated alkynyliridium(I) complex L3Ir(C ≡ C(p-
C6H4Me)) (1)5 (eq. 1).

The complexes 2 have been unequivocally characterized
by spectral data (1H, 13C and 31P NMR, and IR) and elemen-
tal analysis. It is well-known that trans-(alkyl)(bromo)irid-
ium complexes are obtained from the oxidative addition of
alkyl bromides to the related four coordinated iridium com-
plexes.3b,6 The η1-type coordination (Ir-CHα2CHβ = CHγR)
of the allyl groups in 2 is also confirmed by comparing the
data with those for the well-characterized η1-allyl complexes
(Ir,7a W,7b Pd7c and Os7d). The 1H NMR spectra show multi-
plets at δ 2.88 for 2a and 2.63 for 2b due to the Hα of Ir-
CHα2CHβ = CHγR with small coupling constants with two
PPh3 and the Hβ. Relatively large coupling constant (JHβ-Hγ =
15.5 Hz) between Hβ (δ 6.08) and Hγ (δ 5.12) in 2a suggests
these two protons being trans to each other. This trans con-
figuration is also supported by NOE spectral measurement
(Supplementary Information). The 13C NMR spectra show

triplet-like signals at δ 6.05 for 2a and 7.30 for 2b due to the
Cα of η1-CαH2CβH = CγHR which seem to couple with the
two equivalent PPh3. The coupling reaction between the
allyl and alkynyl groups observed in the reaction of 2 with
HCl (see below) also supports the allyl group being cis to
alkynyl ligand.

Reactions of 2 with HCl exclusively produce 1,3-enynes
H2C = C(CH2R)C≡ C(p-C6H4Me) (3) and the hydridochloro-
iridium complex (4) (see eq. 2).8

The enynes H2C = C(CH2R)C≡ C(p-C6H4Me) (3) have
been identified by 1H NMR and GC/mass spectral data anal-
ysis. The signals at δ 5.49 (s) and 5.29 (s) in the 1H NMR
spectrum for 3a are due to the typical vinylidene protons
(= CH2), which agree well with the values reported for the
related compounds.9 Complex 4, L3Ir(H)(Cl)(Br),10 is identi-
fied by 1H NMR (δ −14.61(t)) in CDCl3 and IR (ν(CO),
2024 cm−1, KBr) spectral data.

To elucidate the mechanism for the reaction (eq 2), a deute-
rium labeling experiment was carried out. The treatment of 2a
with DCl yields only the d1-isotopomer H2C = C(CHDPh)C≡
C(p-C6H4Me) (3a-d1) which is identified by the smaller sig-
nal (half of that for 3a) due to the methylene proton at δ 3.55
in the 1H NMR spectrum and mass spectral data (M+ at m/z
233). This result suggests the reaction pathway as depicted
by equation 3. It is very unusual to observe that the proton
(H+) initially attacks the γ-carbon of the allyl group in the
reaction of 2a with HCl while our recent studies showed that
proton prefers to attack the β-carbon of alkynyl group in a (η3-
allyl)(alkynyl)iridium3a and (alkyl)(alkenyl)(alkynyl)iridium3b

rather than any other carbon in these complexes. An allylation
of alkynes is catalyzed in the presence of copper chloride
with allyl bromide and acetylenes.11 The (η1-allyl)(alkynyl)
copper complexes were suggested as the intermediates that
undergo C-C coupling reaction between the α-carbons of the
η1-allyl and alkynyl groups to give 1,4-enynes.11 It should be
also mentioned that an interesting C-C bond is formed in the
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absence of H+ between the α-carbon of the η1-allyl and the
β-carbon of alkynyl group coordinated to iridium in a binu-
clear complex7a while no such C-C coupling reaction has
been found for 2 in the absence of H+.

The intermediate A may undergo a carbon-carbon cou-
pling between the β-carbon of the protonated η1-allyl group
and the adjacent α-carbon of the alkynyl group to form inter-
mediate B which further undergoes the β-hydrogen elimina-
tion to give the enyne 3a and complex 4.

In summary, the reaction shown in eq 3 suggests that the
nucleophilicity (for H+ in particular) of the γ-carbon of the η1-
allyl group is greater than that of the β-carbon of the alkynyl
group in 2. Proton initially attacks on the γ-carbon of the η1-
allyl group of L3Ir(η1-CH2CH = CHR)(C≡ C(p-C6H4Me))(Br)
(2) and then 1,3-enynes are produced through a intramolecu-
lar carbon-carbon coupling between the β-carbon of the pro-
tonated η1-allyl group and β-carbon of the alkynyl group.
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