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Mechanistic Studies on the Anormalous Photocycloaddition
Reaction of 5-Styryl-1,3-dimethyluracil and 2,3-Dimethyl-2-butene:
Formation of the “Apparent Forbidden”[,;4,+,.2,] Cvcloadduct
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Irradiation of 5-styryl-1,3-dimethyluracil (5-SDU) with 2,3-dimethyl-2-butene (DMB) gives a [4+ 2] cycloadduct which
is converted into a [2+2] cycloadduct on the prolonged irradiation. Triplet sensitization, quenching, and external
heavy atom effect on the [44 2] photocycloaddition reaction demonstrate the singlet pathway and salt effect excludes
a radical jon pair precursor possibility. Polar solvents increase the reaction efficiency implying a polar exciplex involve-
ment in the [4+2] photocycloaddition reaction. Inverse temperature dependence both on the reaction and DMB
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fluorescence quenching of 5-SDU indicates the presence of a singlet exciplex intermediate.

Introduction

Photocycloaddition reaction of the unsaturated compounds
to olefins is a reaction of considerable synthetic and theoreti-
cal interest.!”?

The [2+2] type is most commonly encountered photoche-
mical cycloaddition reaction. The photochemical [2+2] cy-
cloaddition reaction of stilbene derivatives to olefins has
been thoroughly investigated®® and the reaction occurs via
a relatively nonpolar singlet exciplex intermediates formed
between the electronically excited stilbene derivatives and
ground state olefins, not vza a radical ion pair.® Solvent® and
temperature effects’® on the reaction support the interme-
diacy of the exciplex.

The photochemical [4+2] cycloadition is also known but
less frequently encountered.’~'®* The Woodward-Hoffmann
rules® and other molecular orbital approaches® predict that
concerted suprafacial [4,+,2,] cycloadditions are photo-
chemically forbidden, whereas concerted suprafacial [.2;+.2]
or [4,+ 4] photocycloadditions are allowed. Triplet sensiti-
zed photodimerization of conjugated diene gives [4+2] cy-
cloadduct as a minor product along with major [2+2] cy-
cloadducts.? "% This photochemically forbidden [4+2] cy-
cloadduct is formed not concertedly but via a triplet bira-
dical intermediate. For anthracene/diene systems, Yang''®
has proposed that formation of allowed [2+2] or [4+4]
and forbidden [4+2] cycloaddition products reflects compe-
ting concerted and stepwise collapse of singlet exciplexes,
with the more polar exciplexes favoring stepwise collapse
leading to [4+2] cycloaddition.

In our previous study,? irradiation of 5-styryl-1,3-dimethyl-
uracil(5-SDU) with 2,3-dimethyl-2-butene(DMB) produces
only a [4+2] cycloadduct and, in turn, this photochemical
Diels-Alder type adduct is rearranged to the [2+27 cycload-
duct on the prolonged irradiation. Our interest is directed
to the first step photoreaction since it is very interesting
that the forbidden [4+2] cycloadduct is the only photoche-
mical product and any allowed [2+2] cycloadduct is not
observed in the first step reaction. It is likely that the pres-
ence of hetero atoms and the conjugation between the cent-

ral C=C double bond and 5,6-double bond of the uracil ring
in 5-SDU lead to the different photochemical behavior from
other stilbene derivatives which give only the [2+2] cyclo-
adducts.

In this paper, mechanism of this anormalous [4+2] pho-
tocycloaddition reaction of 5-SDU with DMB is investigated.

Experimental

Materials. 5-Styryl-1,3-dimethyluracil was prepared as
previously reported.” DMB(Aldrich) was used as received.
Benzophenon(Sigma) was twice recrystallized from cyclohe-
xane and vacuum sublimed; mp. 47.6-48.3C. Azulene(Aldrich)
was recrystallized from n-pentane, and vacuum sublimed;
mp. 98.9-99.9C. Methyl iodide(Aldrich, 99%) was refluxed
with zinc for 1 h and distilled in the dark, bp. 43-44T. Solve-
nts were purified following the literature procedures®

Preparative Photolysis. Preparative-scale irradiations
were carried out in cylindrical Pyrex reactors(50-500 m/ ca-
pacity) equipped with a Rayonet Photochemical Reactor(Sou-
thern New England Ultraviolet Co.) Model RPR-208 with
4 RUL 3500 A fluorescence lamps. Solutions were irradiated
after bubbling with nitrogen gas through the reaction mix-
ture and monitored by TLC. Solvent was removed by rotary
evaporation at reduced pressure. Nonvolatile mixtures were
separated by column chromatography on Kiesel Gel 60(70-
230 mesh, Merck) and HPLC(Waters Associates Model 244
liquid chromatograph equipped with Model 660 A solvent
delivery system, Model 440 UV absorbance detector fixed
at 254 nm and 280 nm, and Model U 6 K universal injector)
on y-Bondapak Cis column(3.9 mm id.x 30 cm, Waters Asso-
ciates Co.).

Quantum Yield Measurements. 30 m/ solutions were
loaded in the Pyrex tubes (13X100 mm, Corning) and de-
gassed by four freeze-pump-thaw cycles at 107 torr with cool-
ing in liquid nitrogen and then flame sealed. These ampules
were irradiated at 366 nm using CS 0-52 and 7-37 Corning
glass filters in a merry-go-round apparatus immersed in a
thermostated water bath with Hanovia 450 W medium pres-
sure mercury arc lamp(Type 697A36). Photolysis was carried
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Figure 1. Solvent effect on the [4+2] cycloaddition reaction
of 5-SDU(GX10"* M) with DMB (0.84 M).

out to less than 5% conversion to minimize the back and
parallel reactions. Light intensities were measured by ferri-
oxalate actinometry.?® The quantitative analysis for the quan-
tum yield measurements was carried out by HPLC.

Fluorescence Measurements. Aminco-Bowmann spec-
trophotofluorometer with an Aminco-XY recorder and 1P21
photomultiplier tube was employed in fluorescence studies.
Sample temperature was controlled by passing cold nitrogen
gas through the liquid nitrogen trap. Temperature was moni-
tored with a copper-constantan thermocouple placed in a
sample cell.

Results and Discussion

Solvent Effect. [,4,+.2.] cycloaddition is photochemi-
cally forbidden. Yang'® has proposed a correlation between
the polarity of arene-1,3-diene exciplexes with the orientation
of photocycloaddition of 1,3-dienes to arenes. The polar exci-
plexes undergo the “apparent forbidden” stepwise [.4,+ .2,]
cycloaddition.

Figure 1 represents the solvent effect of the [4+2] cy-
cloaddition reaction of 5-SDU with DMB. The reaction quan-
tum yield increases with the solvent polarity leading to the
conclusion that [4+2] cycloaddition reaction occurs from
a polar charge-transfer character exciplex formed between
5-SDU and DMB. The more solvent polarity increases, the
more stabilized the polar exciplex is, and the more efficient
the nonconcerted [4+2] cycloaddition reaction is.

The quantum yield of the [4+2] cycloaddition reaction
decreases on the addition of benzophenone triplet sensitizer
(Table 1) suggesting that the reaction proceeds through a
singlet manifold. As shown in Table 2, azulene, an efficient
triplet quencher, does not quench the [4+2] cycloaddition
reaction of 5-SDU with DMB. Table 3 shows that the quan-
tum yield decreases slightly on addition of external heavy
atoms further supporting the participation of the singlet exci-
ted state of 5-SDU in the reaction.

[4:+12,] cycloaddition reaction occurs stepwise, following
the rule of conservation of orbital symmetry for an excited-
state process. The possibility of the intermediacy of a radical
ion pair formed from electron-transfer processes can be tes-

Table 3. Heavy Atom Effect on the [4+2] Cycloaddition Reac-

Bull. Korean Chem. Soc, Vol. 12, No. 4, 1991 435

Table 1. Benzophenone Effect on the [4+2] Cycloaddition
Reaction of 5-SDU(X10* M) with DMB(0.84 M) in Dichloro-
methane

[,COIX10°, M © 1 2 4 6 8
D, X10°

10

32 30 28 26 22 20 18

Table 2. Azulene Effect of the [4+2] Cycloaddition Reaction
of 5-SDU(GXx107* M) with DMB(0.84 M) in Dichloromethane

[Az]x10%, M 0 4 8 12 16 20 30
Dy, X 10°

32 32 32 32 32 31 31

tion of 5-SDU(5X10"* M) with DMB(0.84 M) in Dichlorome-
thane

[CHil]X10% M 0 4 8
¢4+2 X 10’,

12 16 20

30

33 3.2 3.2 31 31

ted by investigation of the salt effect on the reaction. Addi-
tion of BuNCIO,, Mg(ClO,),, and Bu,NI salts in the concen-
tration of 1.2X107% to 1.0X10"2 M does not have any influ-
ence on the reaction indicating that radical ion pair is not
involved in the [4+2] photocycloaddition reaction.

From these results, the singlet polar exciplex seems to
collapse stepwise to afford the [4+2] cycloadduct.

DMB Concentration Effect. The quantum yield of the
[4+2] photocycloaddition reaction increases with DMB con-
centration(0.2-1.4 M). If [4+2] cycloadduct is produced via
the singlet exciplex, the following mechanism can be written.

5-SDU —2 > 15.5DU

15-SDU —F2 5 1p

15.SDU—K> 5.SDU+hy,
15.8DU —% > 5.5DU
15.SDU —Fi > 35.SDU

15-SDU+DMB —% 1[5.5pU---DMB]—<—> [4+2]
cycloadduct

tp —F4 s G15.SDU+ (1— @)5(Z)— SDU

1 1 1
@ 73T E<DMB]

t=1/(ky+ kst kit ki)

where, '5-SDU represents the excited singlet state of E-form
of 5-SDU, I, the intensity of the absorbed light, &, &, %;
ki, k., and k, the rate constant of the twisted '5-SDU forma-
tion, fluorescence, internal conversion, intersystem crossing,
exciplex formation, and decay of p to ground state E- and
Z-SDU, f the fraction giving the [4+2] cycloadduct from
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Figure 2. Plot of ®,.,"! vs [DMB] ™! for the [4+2] cycloaddi-

tion reaction of 5-SDU(5X 1073 M) with DMB(0.2-1.4 M) in dich-
loromethane.

Table 4. Kinetic Parameters from ®,.,"! s [DMB]™! Plot for
the [4+2] Cycloaddition Reaction of 5-SDU(1.5X 1072 M) with
DMB(0.3-14 M) in Ethanol

. Slope, T k. X1078

, C

i M ns M-sec-! Intercept f
44 154 0.28 115 5 0.2
30 98 0.33 153 5 0.2
14 62 040 2.00 5 0.2

the singlet exciplex, '(5-SDU--—-DMB] the singlet exciplex
formed between 5-SDU and DMB, 5(Z)-SDU Z-form of 5-
SDU, and t the singlet lifetime of 5-SDU, respectively.

As shown in Figure 2, the plot of ®¢;, ! vs [DMB]™!
in dichloromethane is linear and its slope and intercept are
255 M and 125, respectively and the values of f=0.08 and
k,=33X10® are obtained using t=147 ps(in %-hexane)?
This very small f value may imply that the singlet exciplex
has other decay processes than the formation of the [4+2]
cycloadduct. A relatively nonpolar solvent, dichloromethane,
is not polar enough to stabilize the polar exciplex and the
exciplex favors decay to the ground state 5-SDU and DMB
rather than collapsing to [4+2] cycloadduct. In ethanol, a
more polar solvent, f value increases up to 0.2(Table 4) and
the [4+2] cycloaddition through the polar exciplex becomes
more efficient.

Temperature Effect. Generally, the reaction rate cons-
tant increases with increasing temperature. However, appar-
ent rate in reversible reaction depends inversely on the tem-
perature in the case of exthothermic reaction. If reversible
exciplex formation is necessary for the [4+2] cycloaddition
reaction, the negative temperature dependence of &, should
be observed.

Temperature dependence on the plot of ®,., ! »s [DMB] !
is shown in Figure 3. As temperature increases, @, de-
creases and slope of the plot of ®,.,"! »s [DMB] ! increa-
ses. Temperature dependence of slope does not represent
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Figure 3. Temperature dependence on the [4+ 2] cycloaddition

reaction of 5-SDU(1.5X107* M) with DMB(0.3-1.4 M) in ethanol:
447T; @, 30T; O, 14T; a4, 4T; ©.
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Figure 4. Temperature dependence on the fluorescence quen-
ching of 5-SDU by DMB(0.6-3.6 M) in ethanol: 0C; @, 17C;
O.

directly the temperature dependence of %, since temperature
effect on t cannot be ignored. Before determining the tempe-
rature dependence of k&, it is necessary to take into account
variation in the singlet lifetime of 5-SDU with temperature.

We previously investigated that temperature dependence
on the fluorescence of 5-SDU in methylcyclohexane-isopen-
tane=1:1 (v/v) follows the equation:®

In{° /I~ 1)=5.86—1376/T

where I,° is the limiting fluorescence intensity of 5-SDU in
low temperature. The results show that an activated process
leading to E-Z isomerization through the twisted singlet 5-
SDU competes with fluorescence.

If I°/I; is approximated as t/°/t, the temperature depen-
dence of fluorescence lifetime can be estimated roughly
using the equation and fluorescence lifetime in H;O at 20T
(375 ps)” and the results are summarized in Table 4. Now,
it is possible to determine k, at various temperature from
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Table 5. Kinetic Parameters for the Fluorescence Quenching
of 5-SDU by DMB(0.6-3.6 M) in Ethanol

., T ko T, ns k,
0 0.13, 0.48, 2.69X10%
17 0.08, 0.38, 2.09X10®

slope/intercept =(k,t)"! of ®,,."! vs [DMB]? plot. If the
temperature dependence on the lifetime of 5-SDU were the
only temperature effect on the cycloaddition, 2, should be
constant. It is clear that k, given in Table 4 has a negative
temperature dependence.

Temperatures dependence on fluorescence quenching of
5-SDU by DMB is shown in Figure 4. The slope, Stern-Vol-
mer constant, of the ®,°/®; vs [DMB] plot is given by k&,
The slope is 0.081 at 17C and this gives an independent
value for k, of 2.09X10%Table 5). It shows good agreement
with the value obtained from the @,,, ' »s [DMB]™! plot
in comparison with %, of 2.0X10® at 14T. The observed ne-
gative temperature dependence of k£, may imply the interme-
diacy of exciplex. The reversible exciplex formation seems
to be followed by subsequent stepwise collapse to form [4+
2] cycloadduct.
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