Triplex, Microwave Induced and Conventional Diels-Alder Reaction of Phenyl-substituted Alkynes with Cyclopentadienes

Hyo Jung Yoon, Joo Mi Lee, Sun Sim Im, and Woo Ki Chae*
Department of Chemistry Education, Seoul National University, Kwanak-Ku, Shilim-dong, Seoul 151-742, Korea Received February 28, 2001

Keywords : Triplex, Microwave irradiation, DCA fluorescence quenching.

Many reports ${ }^{1,2}$ have appeared during the last decade in connection with the mechanism of the triplex cycloaddition reaction. The triplex intramolecular Diels-Alder reaction of alkenylcyclopentadiene and alkenylcyclohexadiene have been studied to compare the photo-adducts with the thermal-adducts and to probe the dependence on tether length between diene and dienophile.
In our previous works ${ }^{3}$ on the triplex effect on the reaction of alkenylcyclopentadienes, bridgehead olefin was produced. This bridgehead olefin, however, was not formed in thermal condition. These results lead us to investigate the reaction of alkynylcyclopentadienes (1) which might produce a double bridged olefins.

$$
\left(\begin{array}{ll}
\mathrm{n} \\
\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} & \mathrm{C}, \mathrm{n}=1 \\
\mathrm{~b}, \mathrm{n}=\mathrm{C}-\mathrm{Ph} & \mathrm{c}, \mathrm{n}=3
\end{array}\right.
$$

1
Irradiation ${ }^{4}$ of $\mathbf{1}$ in a DCA-saturated benzene solution at 350 nm produced an adduct $\mathbf{2}$. Microwave irradiation ${ }^{5}$ of $\mathbf{1}$ in HMPA solution and conventional heating of HMPA solution of $\mathbf{1}$ also produced adduct $\mathbf{2}$ respectively (Eq. (1)).

Application of ${ }^{13} \mathrm{C}$-DEPT, H,H-COSY and HETCOR spectral analyses permit the assignment of protons and carbon resonances for 2 (Table 1 for 2 a).
It is well established ${ }^{6}$ that the 1 -, 2 - and 5 -substituted cyclopentadienes are interrelated by reversible 1,5-hydrogen shift at room temperature. A single adduct derived from 1substituted isomer was obtained (Eq. (2)).

[^0] 0749

Table 1. Correlation of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonance of 2a from HETCOR experiment

${ }^{13} \mathrm{C}-\mathrm{NMR} \delta$	Assignment	${ }^{1} \mathrm{H}-\mathrm{NMR} \delta$
25.61	$\mathrm{C}-\mathrm{H}_{10}$	$2.29-2.35(\mathrm{~m}, J=17.2,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$
		$2.56-2.62(\mathrm{~m}, J=17.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})$
27.26	$\mathrm{C}-\mathrm{H}_{8}$	$1.74-1.95(\mathrm{~m}, J=13.0,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$
		$2.00-2.04(\mathrm{~m}, 1 \mathrm{H})$
29.95	$\mathrm{C}-\mathrm{H}_{9}$	$2.05-2.10(\mathrm{~m}, 2 \mathrm{H})$
54.72	$\mathrm{C}-\mathrm{H}_{4}$	$4.01(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$
70.66	$\mathrm{q}-\mathrm{C}_{1}$	
74.70	$\mathrm{C}-\mathrm{H}_{7}$	$2.00-2.03(\mathrm{~m}, 2 \mathrm{H})$
124.11		
124.54	$\mathrm{C}-\mathrm{H}_{\text {phenyl }}$	$7.04-7.34(\mathrm{~m}, 5 \mathrm{H})$
127.25		
135.97	$\mathrm{q}-\mathrm{C}_{5}$ or q-C	
139.13	$\mathrm{q}-\mathrm{C}_{\text {phenyl }}$	
140.86	$\mathrm{C}-\mathrm{H}_{2}$	$6.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$
145.30	$\mathrm{C}-\mathrm{H}_{3}$	$6.80-6.82(\mathrm{dd}, J=5.1,3.2 \mathrm{~Hz}, 1 \mathrm{H})$
159.02	q-C or $\mathrm{q}-\mathrm{C}_{6}$	

In intramolecular cycloaddition of $\mathbf{1}$, the transition states for the adduct $\mathbf{3}$ from $\mathbf{1 A}$ and $\mathbf{4}$ from $\mathbf{1 C}$ are less favorable than those for the adduct $\mathbf{2}$ from 1B. This unfavorable situation was not overcome by triplex formation (Eq. (3)).

The low yield of adduct $\mathbf{2 c}$ is presumably due to longer tether length $(n=3)$ which causes diene and dienophile to be further apart.

DCA fluorescence was quenched by cyclopentadiene and phenylacetylene, which correspond to the diene and dienophile respectively in 1 . Figure 1 shows the fluorescence of DCA in benzene solution containing increasing concentration of phenylacetylene. Quenching rate obtained by Stern-Volmer technique is $5.6 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The broad and weak structureless emission with a maximum at 550 nm was assigned to the DCA-phenylacetylene exciplex. However, the exciplex emission of DCA with the compound 1 under any condition was not detected. This result implies that exciplex is formed in the case of $\mathbf{1}$ but the high concentration of diene quenches the exciplex emission forming the triplex.

Table 2. The product distribution for the reaction of 1 under triplex, MWI, and thermal condition

Reaction condition	Reaction time	Product distribution (\%)		
		$\mathbf{2 a}$	$\mathbf{2 b}$	$\mathbf{2 c}$
DCA (Triplex)	$10-20 \mathrm{~h}$	30	0	0
MWI	$3-5 \mathrm{~min}$	37	71	8
Thermal	$1-2 \mathrm{~h}$	74	66	6

Figure 1. Quenching of DCA fluorescence with phenylacetylene.
Since the triplex Diels-Alder reaction occurs only in nonpolar solvents where dissociation of the intermediary exciplex to radical ions is energetically unfavorable, cation radical mechanism for $[2+4]$ adduct was excluded without further study of solvent effects.
In the sensitized irradiation of $\mathbf{1 b}$ and $\mathbf{1 c}$, the adducts $\mathbf{2 b}$ and 2c were not obtained probably due to inefficient triplex formation.
Microwave irradiation did not show any non-thermal effect on the reaction, however, the reaction time was decreased to $3-5 \mathrm{~min}$. to obtain maximum yield of products. This short reaction time is ascribed to fast heating upon microwave irradiation as compared to conventional heating system.
In conclusion, DCA-sensitized reaction of 1, the triplex formation did not overcome longer tether length ($\mathbf{2 b}$ and $\mathbf{2 c}$) and MWI reaction did not show any non-thermal effect.
Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-99-041-D00226-D3000).

References

1. Kim, J. I.; Schuster, G. B. J. Am. Chem. Soc. 1992, 114, 9310.
2. (a) Yang, L.; Zhang, M. X.; Liu, Y. C.; Liu, Z. L.; Chow, Y. J. Chem. Soc., Chem. Comm. 1995, 1055. (b) Valat, P.; Wintgens, V.; Chow, Y. L.; Kossanyi, J. Can. J. Chem. 1995, 73, 1902.
3. (a) Yoon, H. J.; Chae, W. K. Tetrahedron Lett. 1997, 38, 5169. (b) Lee, S. H.; Yoon, H. J.; Chae, W. K. J. Photochemistry and Photobiology (A) 1996, 93, 33.
4. A solution of $0.5-1 \mathrm{~g}$ of 1 in 200 mL of DCA-saturated benzene was transferred into ten Pyrex tubes and degassed with purified nitrogen. The samples were irradiated with 16-RPR- 350 nm lamps for $10-15$ hours.
5. A domestic microwave oven which produces 2450 MHz radiation $(700 \mathrm{~W})$ was used for irradiation.
6. (a) Ciganek, E. Org. Reactions; Wiley Press: New York, U.S.A., 1984; Vol. 32, p 65. (b) Lei, B.; Fallis, A. G. J. Org. Chem. 1993, 58, 2186.
7. 1a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.83-1.92(\mathrm{~m}, 2 \mathrm{H})$, 2.43-2.50 (m, 2H), 2.57-2.64 (m, 2H), 2.94-3.00 (m, 2H), 6.10-6.47 (m, 3H), 7.28-7.45 (m, 5H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 19.54,28.29,29.09,29.34,30.23,41.73,81.35$, $90.36,124.38,126.91,127.30,127.94,128.60,131.15,131.96$, 132.87, 134.29, 135.03, 149.20; IR (neat) 3058, 2939, 2900, $2360 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16}$: 208.1253 Found 208.1252; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16}$: C, 92.34: H, 7.66. Found C, 91.91: H, 7.94.
1b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.61-1.74(\mathrm{~m}, 4 \mathrm{H}), 2.38-$ $2.45(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.95(\mathrm{~m}, 2 \mathrm{H}), 6.02-6.46(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 19.30,28.04$, $28.45,28.88,29.34,30.21,41.24,43.21,80.70,80.75,90.15$, $90.22,124.07,126.51,127.47,128.17,130.53,131.54,132.43$, 133.73, 134.68, 146.83, 149.52; IR (neat) 3058, 2936, 2860, $2231 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18}: 222.1409$ Found 222.1404; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18}$: C, 91.83: H, 8.17. Found C, $91.91: \mathrm{H}, 8.09$.
1c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.50-1.64(\mathrm{~m}, 6 \mathrm{H}), 2.38-$ $2.43(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.95(\mathrm{~m}, 2 \mathrm{H}), 6.01-6.45(\mathrm{~m}, 3 \mathrm{H}), 7.24-$ $7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 19.77,28.78$, 29.03, 29.07, 29.64, 30.11, 30.97, 41.61, 43.64, 81.06, 90.69 , $90.74,124.52,126.26,126.72,127.83,128.55,130.81,131.93$, $132.83,134.03,135.16,147.52,150.27$; IR (neat) 3058,3033 , 2933, 2858, $2234 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20}: 236.1565$ Found 236.1560; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20}$: C, 91.47: H, 8.53. Found C, 91.87: H, 8.13.

2a: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are in Table 1. IR (neat) 3059, 2963, 2929, 2855, 1490, $1442 \mathrm{~cm}^{-1}$. HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16}$: 208.1253 Found 208.1250.
2b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.43-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ $1.70(\mathrm{~m}, J=13,13,5,3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.93-$ $1.94(\mathrm{dd}, J=5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.97(\mathrm{dd}, J=5.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.19(\mathrm{~m}, J=13,5.0,3.0$, $1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-3.01(\mathrm{~m}, J=17,4,2,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.76$ $(\mathrm{m}, J=4.5,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.82(\mathrm{dd}, J=5.1,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67-6.69(\mathrm{dd}, J=5.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.31(\mathrm{~m}$, $5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 23.91,24.50,27.16$, 30.17, 52.94, 61.12, 74.30, 125.74, 126.21, 128.19, 137.86, 142.68, 144.37, 145.64, 149.17; IR (neat) 3054, 3018, 2926, 2855, 1493, $1443 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18}$: 222.1409 Found 222.1405; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18}$: C, 91.83: H, 8.17. Found C, 91.89: H, 8.11.

2c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.43-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.85-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.03(\mathrm{dd}, J=6.1,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.18(\mathrm{dd}, J=5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-$ 2.67 (dd, $J=14.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.61(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.59$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.98(\mathrm{dd}, J=5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.34 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 26.47$, 29.25, 29.32, 32.13, 32.74, 53.91, 67.18, 74.01, 125.81, 125.96, 128.11, 137.86, 143.15, 145.51, 147.48, 153.47; IR (neat) $3058,3018,2923,2849,1449 \mathrm{~cm}^{-1}$; HRMS Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20}$: 236.1565 Found 236.1563.

[^0]: *orresponding Author. Tel: +82-2-880-7761, Fax: +82-2-889-

