The Variation of Structure and Transporting Property in SrRu_{1-x}Fe_xO₃

Jung-Chul Park,* Don Kim,† Choong-Sub Lee,‡ and Song-Ho Byeon[§]

Department of Nano Materials Science and Technology, Nano Applied Technology Research Center, Silla University, Busan 617-736, Korea [†]Department of Chemistry, Pukyong National University, Busan 608-737, Korea [‡]Department of Physics, Pukyong National University, Busan 608-737, Korea

[§]College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University, Kyungki 449-701, Korea

Received May 24, 2002

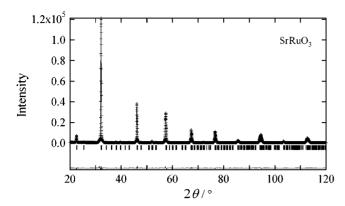
Key Words : Fe-substituted SrRuO₃, Bond-lengths and bond angles, Resistance

The ruthenium based perovskite oxide, SrRuO₃ has been intensively studied due to its diverse electronic and magnetic properties. The structure of SrRuO₃ is orthorhombic (a = 5.573 Å, b = 5.538 Å, c = 7.856 Å), which is similar to that of rare earth orthoferrite, GdFeO₃, but it can be considered as pseudo-cubic (a_p = 3.93 Å). However, the electrical property of both compounds is contradictory to each other, namely a good conductor for SrRuO₃ and an insulator for GdFeO₃. This might be due to the different electron configurations as GdFeO₃ adopts the high spin $t_{2g}{}^3e_g{}^2$ of Fe³⁺and SrRuO₃ the low spin $t_{2g}{}^4e_g{}^0$ of Ru⁴⁺.

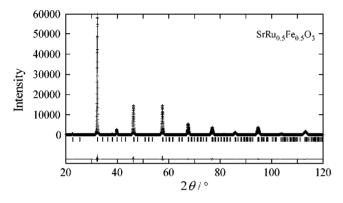
Recently, the electronic structural variation of ARuO₃ (A = Ca, Sr, and Ba) has been discussed using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and Rietveld fitting of the XRD data.¹ The ionic radii of A cations (Ca=1.34 Å, Sr=1.44 Å, and Ba=1.61 Å) induces the distorted orthorhombic, particularly hexagonal symmetry for Ba compound. Moreover, the variation in Ru-O and Ru-Ru bond distances has a great influence on the electrical and magnetic properties of these compounds.

Some reports on the partial substitution of metal cations in Ru sites of ARuO₃. (A=Sr, Ca) have been issued. SrTi_{1-x}-Ru_xO_{3- $\delta}$} ($0 \le x \le 1$) deposited films are cubic or pseudocubic over the whole composition range with the lattice parameters increasing continuously with the concentration of Ru⁴⁺, which correspondingly results in the conductivity variation from insulating to metallic behavior.² The magnetic and transport properties of CaMn_{1-x}Ru_xO₃ ($0 < x \le 0.8$) were studied by Maignan *et al.* using resistivity and ac-susceptibility measurements, and they explained that the inducement of ferromagnetism and metallicity in the antiferromagnetic CaMnO₃ matrix is due to the valence combination (Ru⁵⁺ creating Mn³⁺), which allows double exchange through the hybridization between Ru and Mn eg orbitals.³

As previously reported, $SrFeO_{3-x}$ ($0 \le x \le 0.5$) is particularly interesting because of not only the unusual oxidation state of Fe⁴⁺ but also the wide range of oxygen non-stoichiometry. Takano *et al.* reported that the SrFeO_{3-x} phases (x = 2.50, 2.73, 2.86, and 3.00) exist in different structures.⁴ The perovskite cell is cubic for $2.88 \le x \le 3.00$ and tetragonal (or orthorhombic) for $2.72 \le x \le 2.88$. It should be pointed out that the SrFeO_{2.5} phase with brownmillerite structure is shown to derive from the cubic SrFeO₃ unit cell by periodic removal of O atoms *via* [101] directions. Therefore, the solid-solution between SrRuO₃ and SrFeO_{3-x} is of great interest as the ionic radius of the cations are quite similar (0.620 Å for Ru⁴⁺, 0.645 Å for Fe³⁺, and 0.585 Å for Fe⁴⁺)⁵ and the different electronic configuration may have a great effect on the transporting properties of SrRu_{1-x}Fe_xO₃. In the present paper, we explore the electronic and crystal structure of SrRu_{1-x}Fe_xO₃ ($0 \le x \le 0.5$) in order to explain the variation of transporting properties of Fe-substituted SrRuO₃.


Experimental Section

The compounds in the SrRu_{1-x}Fe_xO₃ ($0 \le x \le 0.5$) solid solution were prepared by typical solid state reactions. Well ground stoichiometric mixtures of SrCO₃, RuO₂, and Fe₂O₃ were heated at 900 °C for 12 h in air. The ground residues were pelletized and heated at 1150 °C for 24 h in air. The final treatment was performed on pellets at 1200 °C for 24 h in air.


The formation of a single phase was confirmed by powder X-ray diffraction (XRD). The patterns for structure refinement were recorded on a rotating anode installed diffractometer with an X-ray source of 40 kV, 300 mA. The Cu K α radiation used was monochromated by a curved-crystal graphite. The data were collected with a step-scan procedure in the range $2\theta = 20{\text{-}}100^{\circ}$ with a step width of 0.02° and a step time of 1 s. The refinements of reflection positions and intensities were carried out using the Rietveld analysis program RIETAN (Izumi et al., 1987). Mössbauer spectroscopic studies were carried out at 300 K with Co⁵⁷ source doped in metallic rhodium which was oscillated in a sinusoidal mode. The Doppler velocity of spectra was calibrated with α -Fe foil (25 μ m in thickness). The electrical resistance of polycrystalline pellets was measured using a standard four probe method.

Results and Discussion

XRD diffraction patterns of SrRu_{1-x}Fe_xO₃ ($0 \le x \le 0.5$) are shown in Figures 1-2. The refined structural parameters obtained from the Rietveld fitting of the XRD data are given Notes

Figure 1. The experimental (top), fitted (middle), and difference (bottom) of X-ray diffraction pattern of SrRuO₃.

Figure 2. The experimental (top), fitted (middle), and difference (bottom) of X-ray diffraction pattern of SrRu_{0.5}Fe_{0.5}O₃.

 Table 1. The structural parameters obtained from the Rietveld fitting of the XRD data

Compounds	Reliability factors (%)				Lattice parameters (Å)			
	$R_{\rm I}$	$R_{\rm WP}$	$R_{\rm P}$	$R_{\rm E}$	а		b	с
SrRuO ₃	1.78	8.84	5.4	2.89	5.570	4(1)7	.8499(2) 5.5356(1)
$SrRu_{0.9}Fe_{0.1}O_3$	1.68	8.43	5.41	3.72	5.569	9(1)7	.8471(2) 5.5359(1)
$SrRu_{0.8}Fe_{0.2}O_3$	1.09	8.08	5.23	3.89	5.568	6(1)7	.8397(2) 5.5374(1)
$SrRu_{0.7}Fe_{0.3}O_3$	1.13	6.66	4.64	3.99	5.565	7(1)7	.8323(2) 5.5375(1)
$SrRu_{0.6}Fe_{0.4}O_3$	1.15	7.01	4.99	4.17	5.560	4(2)7	.8307(3) 5.5426(2)
$SrRu_{0.5}Fe_{0.5}O_3$	0.81	8.94	6.7	4.32	5.547	5(9)7	.8235(4) 5.5490(9)

in Table 1, and the bond lengths and bond angles are listed in Table 2. The XRD data indicate that $SrRu_{1-x}Fe_xO_3$ are orthorhombically distorted GdFeO₃ type structure with space group Pnma. Particularly, the lattice parameters, *a* and *b* gradually increase with increasing Fe-substitution, whereas the lattice parameter, *c* decreases, as shown in Table 1. In order to determine the valence state of Fe, Mössbauer spectroscopy was used. As shown in Figure 3, the valence state of iron in $SrRu_{1-x}Fe_xO_3$ (x = 0.1, 0.2, 0.3, 0.4, and 0.5) is determined to be Fe(III) with the isomer shifts, $\delta = 0.24$, 0.26, 0.27, 0.28, and 0.30 mm/s, respectively.⁶⁻⁸ As above mentioned, the magnetic and transport properties of the CaMn_{1-x}Ru_xO₃ ($0 < x \le 0.8$) were studied by Maignan *et al.*,³ and they explained that the inducement of ferromagnetism

 Table 2. The bond lengths and bond angles obtained from the Rietveld data

Compounds	Bond leng	th (Å)	Bond angle (deg)		
SrRuO ₃	Ru-O1 (×2)	1.968(2)	Ru-O1-Ru	171.6(9)	
	Ru-O2 (×2)	1.991(9)	Ru-O2-Ru	160.3(4)	
	Ru-O2 (×2)	1.994(9)			
SrRu _{0.9} Fe _{0.1} O ₃	RuFe-O1 (×2)	1.964(2)	RuFe-O1-RuFe	172.1(9)	
	RuFe-O2 (×2)	1.972(9)	RuFe-O2-RuFe	162.4(4)	
	RuFe-O2 (×2)	2.001(9)			
SrRu _{0.8} Fe _{0.2} O ₃	RuFe-O1 (×2)	1.967(2)	RuFe-O1-RuFe	170.5(9)	
	RuFe-O2 (×2)	1.95(1)	RuFe-O2-RuFe	166.1(4)	
	RuFe-O2 (×2)	2.010(9)			
SrRu _{0.7} Fe _{0.3} O ₃	RuFe-O1 (×2)	1.967(2)	RuFe-O1-RuFe	169.0(9)	
	RuFe-O2 (×2)	1.95(1)	RuFe-O2-RuFe	168.2(3)	
	RuFe-O2 (×2)	2.00(1)			
SrRu _{0.6} Fe _{0.4} O ₃	RuFe-O1 (×2)	1.978(2)	RuFe-O1-RuFe	163.7(8)	
	RuFe-O2 (×2)	1.96(2)	RuFe-O2-RuFe	169.8(5)	
	RuFe-O2 (×2)	1.98(2)			
SrRu _{0.5} Fe _{0.5} O ₃	RuFe-O1 (×2)	2.001(2)	RuFe-O1-RuFe	155.7(6)	
	RuFe-O2 (×2)	1.92(1)	RuFe-O2-RuFe	176.2(6)	
	RuFe-O2 (×2)	2.01(1)			

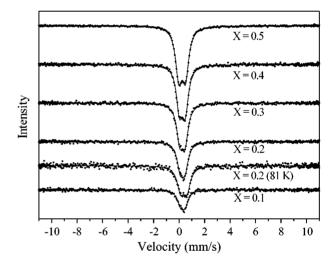


Figure 3. Mössbauer spectra of $SrRu_{1-x}Fe_xO_3$ collected at room temperature and 81 K.

and metallicity in the anti-ferromagnetic CaMnO₃ matrix is due to the valence combination (Ru⁵⁺ creating Mn³⁺), which allows double exchange through the hybridization between Ru and Mn eg orbital. In our system, as Fe³⁺ species are introduced into the SrRuO₃ lattice according to the formula of SrRu⁴⁺_{1-2x}Ru⁵⁺_xFe³⁺_xO₃, Ru⁵⁺ species are formed. So, the local symmetry of (Ru,Fe)O₆ octahedra including (Ru,Fe)-O bond lengths and (Ru,Fe)-O-(Ru,Fe) bond angles may be considerably different from that of RuO₆ ones. The SrRuO₃ compound has a structure derived from the cubic perovskite structure. In this structure, the tolerance factor, $t = (R_{Sr^{2+}} + R_{O^{2-}})/\sqrt{2} (R_{Ru^{4+}} + R_{O^{2-}})$ which relates the Sr-O and Ru-O bond lengths, represents ideal bond-length matching for t= 1. A $t \approx 1$ at high temperature results in a t < 1 at lower temperature. A t < 1 place the Ru-O bonds under com-

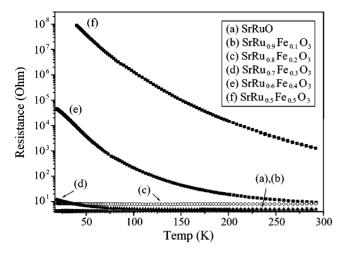


Figure 4. The electrical resistance of $SrRu_{1-x}Fe_xO_3$ as a function of temperature.

pression and Sr-O bonds under tension. This incompatibility can be relieved by a cooperative rotation of the RuO₆ octahedra that bends the Ru-O-Ru bond. As listed in Table 2. the SrRu_{1-x}Fe_xO₃ compounds has different bond lengths, in particular (Ru,Fe)- $O_1(\times 2) = 2.00$ Å, (Ru,Fe)- $O_2(\times 2) = 1.92$ Å, and (Ru,Fe)-O₂ (× 2) = 2.01 Å for $SrRu_{0.5}Fe_{0.5}O_3$ compound, which discloses that the Fe³⁺ species create Ru⁵⁺ species as the longer (2.01 Å) and the shorter bond-length (1.92 Å) exist in (Ru,Fe)-O₂ sheets compared with those of SrRuO₃. It should be pointed out that the (Ru,Fe)- O_2 bond lengths manifest the strength of hybridization between Ru 4d and O 2p states, which is correlated with the transport properties of these compounds. Moreover, the (Ru,Fe)-O₁-(Ru,Fe) bond angles are continuously decreased with increasing the contents of Fe, whereas (Ru,Fe)-O₂-(Ru,Fe) bond angles are gradually increased toward 180°. It is well known that in La₂CuO₄-related superconductors the Cu-O-Cu bond angle would straighten out to 180°, which would remove the mixed symmetry.^{9,10} Such a straightening results in an orthorhombic- to -tetragonal transition, and superconductivity vanishes in the tetragonal phase. As listed in Table 1, c/a values continuously decrease with increasing Fe-substitution, i.e. 1.0063 for SrRuO3 and 0.9997 for $SrRu_{0.5}Fe_{0.5}O_{3}$, which shows the appearance of tetragonal character in SrRu_{1-x}Fe_xO₃ series. These interpretations are well coincident with the resistance results of SrRu_{1-x}Fe_xO₃ series as shown in Figure 4.

Conclusion

The SrRu_{1-x}Fe_xO₃ ($0 \le x \le 0.5$) solid solutions were prepared by typical solid state reactions. The XRD data indicate that SrRu_{1-x}Fe_xO₃ are orthorhombically distorted GdFeO₃ type structure with a space group Pnma. Particularly, the lattice parameters a and b gradually decrease with increasing Fe-substitution, whereas the lattice parameter, c increases. The c/a values continuously decrease with increasing Fesubstitution, i.e. 1.0063 for SrRuO₃ and 0.9997 for SrRu_{0.5}- $Fe_{0.5}O_{3}$, which shows the appearance of tetragonal character in SrRu_{1-x}Fe_xO₃ series. By using Mössbauer spectroscopy, the valence state of iron in $SrRu_{1-x}Fe_xO_3$ (x = 0.1, 0.2, 0.3, 0.4, and 0.5) is determined to Fe(III). The Fe-substituted SrRuO₃ has different bond lengths, in particular (Ru,Fe)-O₁ $(\times 2) = 2.00$ Å, (Ru,Fe)-O₂ $(\times 2) = 1.92$ Å, and (Ru,Fe)-O₂ $(\times 2) = 2.01$ Å for SrRu_{0.5}Fe_{0.5}O₃ compound, which notifies us that the Fe³⁺ species create Ru⁵⁺ species as the longer (2.01 Å) and the shorter bond-length (1.92 Å) exist in (Ru,Fe)-O₂ sheets compared with those of SrRuO₃. The (Ru,Fe)-O₁-(Ru,Fe) bond angles are continuously decreased with increasing the contents of Fe-substitution, whereas (Ru,Fe)-O₂-(Ru,Fe) bond angles are gradually increased toward 180°. These structural behaviors are well coincident with the resistance results of SrRu_{1-x}Fe_xO₃ series.

Acknowledgment. This work was supported by Korean Research Foundation Grant (KRF-2000-015-DP0298).

References

- Rama Rao, M. V.; Sathe, V. G.; Sornadurai, D.; Panigrahi, B.; Shripathi, T. Journal of Physics and Chemistry of Solids 2001, 62, 797.
- Gupta, A.; Hussey, B. W.; Shaw, T. M. Materials Research Bulletin 1996, 31, 1463.
- Maignan, A.; Martin, C.; Hervieu, M.; Raveau, B. Solid State Communication 2001, 117, 377.
- Takano, M.; Nakayama, N.; Bando, Y.; Takeda, Y.; Kanno, K.; Takada, T.; Yamamota, O. J. Sol. State Chem. 1986, 63, 237.
- 5. Shannon, R. D. Acta Cryst. 1976, 32, 751.
- 6. Demazeau, G.; Fabritchnyi, P.; Fournes, L.; Darracq, S.; Presniakov, I. A.; Pokholok, K. V. J. Mater. Chem. **1995**, *5*, 553.
- 7. Nasu, S. Hyperfine Interactions 1994, 90, 59.
- Cao, X.; Koltypin, Yu.; Katabi, G.; Prozorov, R.; Felner, I.; Gedanken, A. J. Mater. Chem. 1997, 7, 1007.
- Goodenough, J. B.; Manthiram, A.; Zhou, J. Mat. Res. Soc. Symp. Proc. 1989, 156, 339.
- 10. Goodenough, J. B. MRS Bulletin 1990, May, 23.