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Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the
treatment of diabetes and the other carbohydrate mediated diseases. As a method for the discovery of new novel
inhibitors of α-glucosidase, we have addressed the performance of the computer-aided drug design protocol
involving the homology modeling of α-glucosidase and the structure-based virtual screening with the two
docking tools: FlexX and the automated and improved AutoDock implementing the effects of ligand solvation
in the scoring function. The homology modeling of α-glucosidase from baker’s yeast provides a high-quality
3-D structure enabling the structure-based inhibitor design. Of the two docking programs under consideration,
AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands to the extent of 5-fold
enhancement of hit rate in database screening when 1% of database coverage is used as a cutoff. A detailed
binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of α-
glucosidase through the simultaneous establishment of the multiple hydrogen bond and hydrophobic
interactions. The present study demonstrates the usefulness of the automated AutoDock program with the
improved scoring function as a docking tool for virtual screening of new α-glucosidase inhibitors as well as for
binding mode analysis to elucidate the activities of known inhibitors. 
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Introduction

Glucosidases catalyze the final step in the digestive
process of carbohydrates by the hydrolysis of a glycosidic
bond in oligosaccharides. They are responsible for the
catalytic cleavage of a glycosidic bond with specificity
depending on the number monosaccharides, the position of
cleavage site, and the configuration of the hydroxyl groups
in the substrate.1 The most extensively studied are α- and β-
glucosidases that are known to catalyze the hydrolysis of the
glycosidic bonds involving a terminal glucose at the cleav-
age site through α- and β-linkages at the anomeric center.
These two glucosidases differ in how to position their two
carboxylic acid sidechains during catalysis:2 one plays the
role of a catalytic nucleophile attacking the anomeric center,
and the other acts as an acid catalyst weakening the C-O
bond by protonation. Of the two popular glucosidases, α-
glucosidase (EC 3.2.1.20) has drawn a special interest of the
pharmaceutical research community because it was shown
in earlier studies that the inhibition of its catalytic activity
resulted in the retardation of glucose absorption and the
decrease in postprandial blood glucose level.3-5 Therefore,
effective α-glucosidase inhibitors may serve as chemothera-
peutic agents for clinic use in the treatment of diabetes and
obesity. Due to the catalytic role in digesting carbohydrate
substrates, α-glucosidase has also been well appreciated as a
therapeutic target for the other carbohydrate mediated di-
seases including cancer,6 viral infections,7,8 and hepatitis.9 

Since the discovery of acarbose that is the first member of
α-glucosidase inhibitors approved for the treatment of type 2
diabetes,10 a variety of α-glucosidase inhibitors have been

discovered and recently reviewed in an extensive fashion.11

These include transition state analogues,12 newly identified
synthetic compounds,13-20 and natural products isolated from
a variety of species.21-23 Most of the α-glucosidase inhibitors
reported in the literature stem from either the isolation of
new scaffolds by high throughput screening or the gener-
ation of the improved derivatives of pre-existing inhibitor
scaffolds. So far the rational drug design protocol has not
been applied for α-glucosidases because the structural
investigations have lagged behind the mechanistic and
pharmacological studies. Indeed, structural information of
α-glucosidases has thus been limited to those of a few
bacterial strains only in ligand-free forms.24,25 The lack of
structural information about the nature of the interactions
between α-glucosidases and small molecule inhibitors has
thus made it a difficult task to discover good lead com-
pounds based on the structure-based inhibitor design.

In the present study, we address the performance of a
computer-aided drug design protocol involving the homo-
logy modeling of α-glucosidase and the structure-based
virtual screening with docking simulation as a tool for
identifying novel classes of potent α-glucosidase inhibitors.
Two popular docking programs, FlexX and AutoDock, are
used in this work. The characteristic feature that discirimi-
nates our virtual screening approach from the others lies in
the implementation of an accurate solvation model in
calculating the binding free energy between α-glucosidase
and its putative ligands, which would have the effect of
increasing the hit rate in enzyme assay.26,27 We select the α-
glucosidase from baker’s yeast as the target protein because
it has been used most extensively in biological assays to
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evaluate the newly discovered α-glucosidase inhibitors. To
the best of our knowledge, we report the first example for
the usefulness of the structure-based virtual screening to
identify novel α-glucosidase inhibitors. It will be shown that
the docking simulation with the improved binding free
energy function can be a valuable tool for enriching the
chemical library used in screening assays with molecules
that are likely to have a desired biological activity.

Computational Methods

Homology modeling of yeast α-glucosidase. Although
the X-ray crystal structures of a few bacterial α-glucosidases
have been reported, structural information is still unavailable
for the eukaryotic α-glucosidase enzymes commonly used
in biological assays, such as that from baker’s yeast. In order
to obatin the three-dimensional structure of α-glucosidase
from baker’s yeast, therefore, we carried out the homology
modeling using the X-ray structure of oligo-1,6-glucosidase
from Bacillus cereus as the template.28 This homology
modeling started with the retrieval of the amino acid
sequence of the α-glucosidase MAL12 from baker’s yeast
that comprises 584 amino acid residues from the SWISS-
PROT protein sequence data bank (http://www.expasy.org/
sprot/; accession number P53341).29 In order to find a proper
structural template for homology modeling, we searched for
the Protein Data Bank (PDB) at National Center for
Biotechnology and Information (NCBI) using BLAST and
PSIBLAST algorithms with the amino acid sequence of the
target as input. The results showed that oligo-1,6-glucosid-
ase from Bacillus cereus reveals the highest sequence
identity (38.5%) with the target. Therefore, its X-ray crytal
structure (PDB ID: 1UOK) was selected as the template for
homology modeling. Although 4-α-glucanotransferase from
Thermotoga maritima revealed a sequence identity of about
30% with the target protein, it was not used in homology
modeling because the number of aligned amino acids
amount to at most 300 as compared to 575 in case of oligo-
1,6-glucosidase from Bacillus cereus. Sequence alignment
between α-glucosidase from baker’s yeast and oligo-1,6-
glucosidase from Bacillus cereus was then obtained with the
ClustalW package30 using the BLOSUM matrices for scor-
ing the alignments. The parameters of GAP OPEN, GAP
EXTENTION, and GAP DISTANCE were set equal to 10,
0.05, 8, respectively. Opening and extension gap penalties
were changed systematically, and the obtained alignment
was inspected for violation of structural integrity in the
structurally conserved regions. Based on the best-scored
sequence alignment, the three dimensional structure of α-
glucosidase from baker’s yeast was constructed using the
MODELLER 6v2 program.31 In this model building, we
employed an optimization method involving conjugate
gradients and molecular dynamics to minimize violations of
the spatial restraints. With respect to the structure of gap
regions, the coordinates were built from a randomized and
distorted structure that is located approximately between the
two anchoring regions as implemented in MODELLER 6v2.

To increase the accuracy of calculated structure, the loop
modeling was also performed with the enumeration
algorithm.32 Then, we calculated the conformational energy
of the predicted structure of α-glucosidase with ProSa 2003
program33 for the purpose of a final evaluation.

Construction of a docking library. The docking library
for α-glucosidase comprises its own 20 known inhibitors as
well as 980 common compounds selected from the MDL
Drug Data Report (MDDR) database. This selection was
based on drug-like filters that adopt only the compounds
with physicochemical properties of potential drug candi-
dates34 and without reactive functional group(s). All of the
compounds included in the docking library were then sub-
jected to the Corina program to generate their 3-D coordi-
nates, followed by the assignment of Gasteiger-Marsilli
atomic charges.35 The chemical structures of the 20 known
inhibitors of α-glucosidase seeded in the docking library are
shown in Supporting Information.

Virtual screening of α-glucosidase inhibitors with Auto-
Dock. We used the automated version of the AutoDock
program36 in the structure-based virtual screening of α-
glucosidase inhibitors because the outperformance of its
scoring function over those of the others had been shown in
several target proteins.37 The atomic coordinates of α-gluco-
sidase obtained from the homology modeling were used as
the receptor model in the virtual screening with docking
simulations. A special attention was paid to assign the
protonation states of the ionizable Asp, Glu, His, and Lys
residues. The side chains of Asp and Glu residues were
assumed to be neutral if one of their carboxylate oxygens
pointed toward a hydrogen-bond accepting group including
the backbone aminocarbonyl oxygen at a distance within 3.5
Å, a generally accepted distance limit for a hydrogen bond
of moderate strength.38 Similarly, the side chains of Lys
residues were protonated unless the NZ atom was in a close
proximity of a hydrogen-bond donating group. The same
procedure was also applied to determine the protonation
states of ND and NE atoms in the side chains of His
residues.

In the actual docking simulation of the compounds in the
docking library, we used the empirical AutoDock scoring
function improved by the implementation of a new solvation
model for a compound. The modified scoring function has
the following form:

(1)
where WvdW, Whbond, Welec, Wtor, and Wsol are the weighting
factors of van der Waals, hydrogen bond, electrostatic inter-
actions, torsional term, and desolvation energy of inhibitors,
respectively. rij represents the interatomic distance, and Aij,
Bij, Cij, and Dij are related to the depths of the potential
energy well and the equilibrium separations between the two
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atoms. In this study, AMBER force field parameters were
assigned for calculating the van der Waals interactions and
the internal energy of a ligand as implemented in the Auto-
Dock program. The hydrogen bond term has an additional
weighting factor, E(t), representing the angle-dependent
directionality. With respect to the distant-dependent di-
electric constant, ε(rij), a sigmoidal function proposed by
Mehler et al.39 was used in computing the interatomic
electrostatic interactions between a receptor protein and a
ligand molecule. In the entropic term, Ntor is the number of
sp3 bonds in the ligand. In the desolvation term, Si and Vi are
the solvation parameter and the fragmental volume of atom
i,40 respectively, while Occi

max stands for the maximum
atomic occupancy. In the calculation of molecular solvation
free energy term in equation (1), we used the atomic para-
meters recently developed by Kang et al.41 because those of
the atoms other than carbon were unavailable in the current
version of AutoDock. This modification of the solvation free
energy term is expected to increase the accuracy in virtual
screening, because the underestimation of ligand solvation
often leads to the overestimation of the binding affinity of a
ligand with many polar atoms.27

The docking simulation of a compound in the docking
library started with the calculation of the three-dimensional
grids of interaction energy for all of the possible atom
types present in chemical database. These uniquely defined
potential grids for the receptor protein were then used in
common for docking simulations of all compounds in the
docking library. As the center of the common grids in the
active site, we used the center of mass coordinates of the
docked structure of the probe molecule, acarbose, whose
binding mode had been known in the active site of 4-α-

glucanotransferase that is closely similar in structure to the
template (oligo-1,6-glucosidase) used in the homology
modeling.42 The calculated grid maps were of dimension 61
× 61 × 61 points with the spacing of 0.375 Å, yielding a
receptor model that includes atoms within 22.9 Å of the grid
center. For each compound in the library, 10 docking runs
were performed with the initial population of 50 individuals.
Maximum number of generations and energy evaluation
were set to 27,000 and 2.5 × 105, respectively.

Virtual screening of α-glucosidase inhibitors with FlexX.
All default parameters, as implemented in Sybyl 6.9, were
used for all target proteins and compounds in docking
simulations. The active site and the interaction surface of the
receptor were defined by using the reference ligand, acarbose,
whose binding mode had been calculated with docking
simulations and cutoff distance of 6.5 Å. The conformational
flexibility of a ligand was modeled by a discrete set of pre-
ferred torsional angles for acyclic single bonds. Base frag-
ments were then selected automatically with the maximum
number of 4. A base fragment was placed into the active site
based on the two algorithms. The first one superimposes
triplets of interaction centers of the base fragment with
triples of compatible interaction sites. Second, the matching
algorithm was used when the base fragment had fewer than
three interaction centers. The empirical scoring function
given in equation (2) was used for ranking the binding
modes of each ligand in the prepared compound databases:43

.
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Figure 1. Sequence alignment between α-glucosidase (MAL12) and oligo-1,6-glucosidase (O16GB). The identity and the similarity bet-
ween the corresponding residues are indicated in red and green, respectively. The active site residues are indicated in a blue rectangular box.

(2)
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Here,  is a scaling function penalizing deviations
from the ideal distances and angles and  penalizes
the forbiddingly close contacts for lipophilic interactions of
nonaromatic groups.

Results and Discussion

Homology Modeling of α-glucosidase. Figure 1 displays
the sequence alignment between α-glucosidase MAL12
from baker’s yeast and oligo-1,6-glucosidase from Bacillus
cereus (O16GB). According to this alignment, the sequence
identity and the similarity amount to 38.5% and 58.4%,
respectively. Judging from such a high sequence homology,
a high-quality 3D structure of α-glucosidase can be expected
in the homology modeling. It is indeed well known that a
homology-modeled structure of a target protein can be
accurate enough to be used in docking studies once the
sequence identity between target and template approaches
40%.44 Based on the sequence alignment shown in Figure 1,
ten structural models of α-glucosidase were calculated and
the one with the lowest value of MODELLER objective
function was selected as the final model to be used in the
virtual screening. 

Figure 2 shows the structure of α-glucosidase obtained
from the homology modeling in comparison with the X-ray
crystal structure of oligo-1,6-glucosidase that was used as
the template. The target and the template possess a very
similar folding structure and are superimposable over the
main chain atoms. The two enzymes also share the catalytic
residues that are situated in their respective active sites in a
similar fashion. This is not surprising because both enzymes
catalyze the hydrolysis of terminal glycosidic bond of carbo-
hydrates.44 The van der Waals volumes of α-glucosidase and
oligo-1,6-glucosidase are calculated to be 40,928 and 41,073
Å3, respectively. Such a close similarity in the van der Waals
volume and the possession of 18 additional amino acids in
the sequence alignment indicate that α-glucosidase should
be more compact in amino acid packing than oligo-1,6-
glucosidase. Such a structural difference may be related with

the differentiations of the active site geometry and substrate
specificity as well as the catalytic efficiency. Indeed, gluco-
sidases have generally exhibited a high specificity in enzyme
catalysis by cleaving only one type of glycosidic linkage in a
given anomeric configuration.45 

The final structural model of α-glucosidase obtained from
homology modeling was tested with the ProSa 2003 pro-
gram by examining whether the interaction of each residue
with the remainder of the protein is maintained favorable.
This program calculates the knowledge-based mean fields to
judge the quality of protein folds, and has been widely used
to measure the stability of a protein conformation. More
specifically, the energy profile of a protein is calculated
using the potential of mean forces derived from a large set of
known protein structures. The main criterion is that the
interaction energy of each residue with the remainder of the
protein should have a negative value. Figure 3 shows the
ProSa 2003 energy profile of the homology-modeled α-
glucosidase in comparison to that of the X-ray structure of
oligo-1,6-glucosidase. We note that the ProSa energy of α-
glucosidase remains negative for all amino acid residues
except for a few around the residue number of 210, indi-
cating the acceptability of the homology modeled structure.
This result supports the possibility that the homology
modeling with a high sequence identity and a high-quality
template structure can produce a 3-D structure of a target
protein comparable in accuracy to that determined from X-
ray crystallography.44

As a further evaluation of the homology-modeled
structure of α-glucosidase, the final model obtained with
MODELLER was subject to stereochemical analysis with
the PROCHECK program. The results show that the back-
bone F and Y dihedral angles of 69.3%, 25.1%, and 5.6% of
the residues are located within most favorable, additionally
allowed, and generously allowed regions of the Ramachan-
dran plot, respectively, with no residue in disallowed region.
This good stereochemical quality is not surprising for the
high sequence identity (38.5%) and similarity (58.4%) bet-
ween the template and the target as illustrated in Figure 1.

f ΔR,Δα( )
f * ΔR( )

Figure 2. Comparative view of (a) homology-modeled structure of
α-glucosidase and (b) X-ray crystal structure of oligo-1,6-glucosid-
ase.

Figure 3. Comparison of the ProSa energy profiles for the
homology-modeled structure of α-glucosidase (red) and the X-ray
structure of oligo-1,6-glucosidase (green).
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Virtual screening. We have tested the performances of
the automated AutoDock and FlexX in the structure-based
virtual screening of α-glucosidase inhibitors. This compara-
tive evaluation was done with the homology-modeled struc-
ture of α-glucosidase as the target protein and the docking
library that contains 980 randomly chosen drug-like mole-
cules and 20 known inhibitors. Compared in Figure 4 are the
percentages of true hits retrieved by the AutoDock and
FlexX in increasing fractions of the starting database. The
horizontal and vertical axes represent the top percentage of
one thousand of all tested compounds and the percentage of
the known inhibitors in a given top percentage, respectively.
We note that the AutoDock performs better than FlexX in
providing the highest enrichment at every fraction cutoff. It
picks 5 actives seeded in top 1% of the database as com-
pared to 1 for FlexX. The performance of the AutoDock
becomes clearer when one compares the ability to pick out
the most actives out of a cumulative total of 20 used in this
study. When 10% of the database is considered, for example,
the AutoDock retrieved a total of 9 actives out of the total 20
known inhibitors, contrary to only 4 actives by FlexX. Thus,
the outperformance of the automated AutoDock reveals a

consistency for all cutoffs, indicating that it can be a promis-
ing docking tool for virtual screening of α-glucosidase
inhibitors. 

The difference in the accuracies of AutoDock and FlexX
in database screening can be understood by comparing their
respective scoring functions. It is common to the two
docking programs that their scoring functions include the
angle-dependent directionality of a hydrogen bond and
entropic penalty for the formation of a protein-ligand com-
plex. On the other hand, there are two characteristic features
that discriminate the scoring function of AutoDock from that
of FlexX: the use of a sigmoidal distance-dependent di-
electric function in the electrostatic term and desolvation
cost for complexation of a ligand in the binding site. The
former has an effect of modeling solvent screening in the
electrostatic interactions between charged atoms.39 This is
important because the top-scored ligands obtained with a
small value of dielectric constant tend to possess many
atoms with high partial charges as a consequence of the
overestimation of electrostatic interactions. The effect of
ligand solvation is also important, particularly in comparing
many putative ligands that differ in polarity and size. The hit
compounds may have a severe charge separation on their
molecular structures or be larger than expected unless the
energy of the solvated state is considered in docking simu-
lations.27 Thus, a significant outperformance of AutoDock
over FlexX should be attributed to the inclusion of solvation
term in the scoring function as well as a more proper
description of electrostatic interactions between protein and
ligand atoms.

Molecular modeling studies of the known inhibitors.
Shown in Figure 5 are the chemical structures of the known
α-glucosidase inhibitors in the top 1% of all of the tested
compounds obtained with AutoDock (1-5) and FlexX (6). It
is noted that none of the six inhibitors is retrieved by both of
the two virtual screening programs. This is not surprising
due to the difference in the scoring functions of the two
programs as shown in equations (1) and (2). Virtual screen-
ing with AutoDock predicts that the two compounds (1 and
2 in Figure 5) are the strongest binders in the active site of α-

Figure 4. The cumulative percentage of known α-glucosidase
inhibitors recovered by virtual screening as a function of the top-
scoring fraction of database selected for generating a hit list.

Figure 5. Chemical structures of the top-scored α-glucosidase inhibitors retrieved in virtual screening with AutoDock (1-5) and FlexX (6).
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glucosidase among the 20 known inhibitors under conside-
ration, the systematic names of which are 1,5,7,9,11,14-
hexahydroxy-3-methyl-8,13-dioxo-5,6,8,13-tetrahydro-benzo-
[a]naphthacene-2-carboxylic acid and 4-hydroxymethyl-6-
{[5-(5-trifluoromethyl-2H-pyrazol-3-yl)-thiophen-2-ylmethyl]-
amino}-cyclohex-4-ene-1,2,3-tripol, respectively. It is noted
that both inhibitors possess many hydroxyl groups, indicat-
ing the involvement of multiple hydrogen bonds in their
interactions with the active site of α-glucosidase. It is also a
common structural feature of the two inhibitors that the polar
groups are attached to a hydrophobic backbone. These
hydrophobic moieties seem to be stabilized at the active site
through the interactions with the nonpolar groups of α-
glucosidase.

To gain more structural insight into the inhibitory mech-
anism for α-glucosidase, the binding modes of 1 and 2 were
examined using the AutoDock program with the procedure
described in the previous section. The calculated binding
modes of the two inhibitors in the active site of α-gluco-
sidase are compared in Figure 6. It is seen that the 5,7-
dihydroxy-[1,4]naphthoquinone moiety of 1 resides in close
proximity to the catalytic residues including Asp214,
Glu276, His348, and Asp349, indicating that it can serve as
a surrogate for the terminal glucose with anomeric center in
the substrate. Four hydrogen bonds are established between
the phenolic and carbonyl oxygens of 1 and the side chains
of Asp214, Thr215, Ser244, and Arg312. This is consistent
with recent computational studies on the inhibition of β-
glucosidase in which the formation of multiple hydrogen
bonds in the active site was shown to be a significant bind-
ing force.46 We also note that the tetrahydro-benzo[a]naph-
thacene backbone of 1 forms hydrophobic contacts with the
side chains of Tyr71, Phe157, His279, Phe300, and Phe311,
indicating that van der Waals interactions would also play a
significant role in stabilizing the enzyme-inhibitor complex.
Therefore, 1 is most likely to be capable of inhibiting the
catalytic action of α-glucosidase by a tight binding in the
active site through the multiple hydrogen bond and hydro-
phobic interactions in a cooperative fashion.

Four hydrogen bonds are also observed in the calculated
binding mode of 2 between the hydroxyl groups of the
inhibitor and the side chains of Asp68, His111, Asp214, and

Arg349. Hence, the formation of multiple hydrogen bonds
seems to play a role of anchoring the inhibitors to the
enzymatic active site. The thiophenylpyrazole moiety of 2 is
stabilized by hydrophobic contacts with Tyr71, Phe157,
His279, Phe300, Thr307, Phe311, and Arg312 in a stronger
way than the hydrophobic interactions of 1 in the active site
of α-glucosidase. On the other hand, the backbone scaffold
of 1 has no torsional degree of freedom, indicating a sub-
stantial decrease in entropic penalty for the formation of
enzyme-inhibitor complex as compared to the other ligands
with rotatable bonds. The entropic contribution has indeed
been shown to be the most significant ingredient in the bind-
ing free energy function.35 This affinity-enhancing factor
reflected in 1 seems to compensate for its relatively weak
van der Waals interactions in the active site, which can be an
explanation for the similarity in the calculated binding free
energies of 1 and 2. 

Conclusions

As a method for the discovery of new novel inhibitors of
α-glucosidase, we have addressed the performance of the
computer-aided drug design protocol involving the homo-
logy modeling of the target protein and the structure-based
virtual screening with the two docking tools: FlexX and the
automated and improved AutoDock implementing the
effects of ligand solvation in the binding free energy func-
tion. The homology modeling of α-glucosidase provides a
high-quality 3-D structure to the extent of enabling the
structure-based inhibitor design. Of the two docking pro-
grams under consideration, AutoDock is found to be more
accurate than FlexX in terms of scoring putative ligands
with 5-fold enhancement of hit rate in database screening
when 1% of database coverage is used as a cutoff. The out-
performance of the improved AutoDock program in virtual
screening of α-glucosidase inhibitors can be attributed to the
accuracy in the scoring function in which the effects of
ligand solvation in protein-ligand interaction are taken into
account. It is also shown from a detailed binding mode
analysis of the known inhibitors that their binding in the
active site of α-glucosidase can be facilitated by the
establishment of multiple hydrogen bonds with the side

Figure 6. Calculated binding modes of (a) 1 and (b) 2 in the active site α-glucosidase. Carbon atoms of the protein and the ligand are indicated in
green and cyan, respectively. Each dotted line indicates a hydrogen bond.
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chains of polar residues. Simultaneously, the hydrophobic
interactions with the residues near the active site can also
play a significant role in stabilizing the inhibitors in the
active site of α-glucosidase. The present study demonstrates
the usefulness of the automated AutoDock program with the
improved scoring function as a docking tool for virtual
screening of new α-glucosidase inhibitors as well as for
binding mode analysis to elucidate the activities of known
inhibitors.
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