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The effect of concentration fluctuations on the changes of azimuth and ellipticity are analytically obtained in a
binary chiral liquid mixture, when the incident light is completely linearly polarized above (or below) the
horizontal at 45o. The important results are as follows; (1) When the binary liquid is in the critical region far
from the critical point, the ellipticity change is proportional to isothermal compressibility factor and the fifth
order of frequency. As the system approaches very close to the critical point, the change is proportional to the
third order of frequency and shows the logarithmic divergence. (2) In the case that the system is in the critical
region far from the critical point, the azimuth change is solely due to the molecular contribution. As the system
approaches to the critical point, the effect of fluctuations becomes important. If it is in the extreme close to the
critical point, the term due to the concentration fluctuations is comparable to or larger than the molecular
contribution.
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Introduction

In the previous paper1 the authors have obtained analytic
results for the phase changes of a forward-scattered light in
an isotropic fluid, when the incident light is completely
linearly polarized above (or below) the horizontal at 45o,
using the formalism given by Barron2 and the theory for the
dielectric tensor developed by one of the authors and his
coworker.3 The result is so effective that we could discuss the
effect of density fluctuations on the azimuth and ellipticity
of the scattered light in the critical region.

In this paper we shall extend the results to a binary liquid
mixture composed of an optically active solute and an
optically nonactive solvent. The mixture is more suitable for
experimental verification than the pure fluid. The basic
difference with the latter is that there is one more extra
variable in the mixture, i.e., the concentration fluctuations on
the phase changes of the forward-scattered light in the
critical region of a binary liquid mixture. The form of the
correlation function to be used is the Ornstein-Zernike form.
In the next section we obtain the explicit results for the
azimuth and ellipticity changes are discussed in the limiting
cases in the critical region.

Theory

Let us consider monochromatic light propagating along z
and incident on a scattering cell, which is assume to be an
infinitely wide lamina (xy plane) with the infinitesimal
thickness relative to the wavelength of light. If only a small
fraction of the wave is scattered by the fluctuating chiral
fluid in the scattering cell, the disturbance reaching a point f

at R0 a large distance from the lamina in the forward
direction is essentially the original light plus a contribution
due to the scattering by the fluctuating fluid in the lamina.
The total light at f is the sum of the primary wave and the
scattered light from the lamina, which is given as1,2

(1) 

where c is the light velocity in vacuum;  is the forward
component of the macroscopic polarizability density tensor
of the chiral fluid, which will be discussed in detail later; dz
is the thickness and  is the incident light. From now on
we shall take units such that c is unity. 

The light  can be written as the sum of two coherent
fields completely linearly polarized in the x and y directions 

(2) 
 

The general pure polarization state can be described in terms
of the ellipticity, η and azimuth, θ4. Then, the complex
amplitude may be written as

 (3) 

where

(4) 
 

The six basic polarization states of the incident field are
given in the Table 1.

The Stokes’ parameters for the incident and scattered
lights are defined as2,5,6 
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,

, (5)
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, ,

where the subscripts 0 and f in the above definition denote
the incident and total forward lights, respectively, and the
sharp brackets represent the statistical average. 

The Stokes’ parameter If of the transmitted wave is, using
Eq. (1)

Using the definition of Stokes’ parameters given in Eq. (5),
we obtain If and the other parameters up to the first order of
dy as follows 

  (6a)

  (6b)

  (6c)

  (6d)

In Eqs. (6) and denote the real and imaginary parts,
respectively. The changes of intensity, azimuth and ellipti-
city are effectively infinitesimal so we can write ,

 and . The differential equations for
the changes of intensity, azimuth and ellipticity with the
respect to dy are given as

 
(7a) 

    

(7b) 

    

 (7c) 

where we have used the relations

(8)

For the linearly polarized light above (below) the horizontal
at 45o, we obtain

(9a)

(9b)

(9c)

The sign ± corresponds to the lights polarized linearly above
and below the horizontal at 45o, respectively. The first
equation, Eq. (9a) describes the absorption; Eq. (9b) express-
es an azimuth change due to linear dichroism brought about
through a differential absorption of the two linearly polariz-
ed components of the incident light resolved along the x and
y directions and imaginary part of antisymmetric polariz-
ability tensor component; Eq. (9c) shows the corresponding
ellipticity change due to linear birefringence, that is, Kerr
effect and real part of antisymmetric polarizability tensor
component.

Let us consider an isotropic chiral fluid. The antisym-
metric part in Eq. (9a) can be neglected, since it is very small
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Table 1. The definition of six basic polarized lights

Kind of polarized lights θ η

horizontally linearly polarized light π/2 0
vertically linearly polarized light 0 0
linearly polarized light above the horizontal at 45o π/4 0
linearly polarized light below the horizontal at 45o −π/4 0
right circularly polarized light 0 −π/4
left circularly polarized light 0 π/4
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compared with the symmetric part. Also, the part due to the
linear dichroism and Kerr effect in Eqs. (9b) and (9c) can be
neglected. Integration over a finite path length l leads to the
following results 

(10a)

  (10b)

  (10c)

where I0 is the initial intensity and the explicit form of 
will be given later. 

Let us consider the spatial correlations in a binary liquid
mixture composed of an optically active solute and an
optically nonactive solvent, denoted by 1 and 2, respectively.
There are two correlations due to density fluctuations at
constant concentration and concentration fluctuations at
constant density. Let us define two kinds of fluctuating
quantities A and B as

, ,  (11)

where An and Bn are the molecular constants of the νth
species of the mixture and ρν is the density of the νth
component. With the static approximation we may write the
correlation function as 

(12)

Referring to the detailed discussion to ref. 7, the correlation
function can be written in terms of two kinds of correlation
functions, that is,

(13)

where 

  (14)

In Eq. (13)  is the density of the mixture at equilibrium
and  and  are the correlation functions of fluctuating
reduced density ∆ζ and mole fraction ∆x1 defined as

(15)

In Eq. (14)  is the mole fraction of the solute at
equilibrium and  and  are the equilibrium values of the
molar volume of the mixture and the partial molar volume of
the solute, respectively. We may use the static approximation
for the correlation function in the case that the velocity of a
molecule in the fluid is very small compared with the light

velocity. With the aid of the Onstein-Zernike approximation
the Fourier transforms for the correlation functions are

(16)

where

 

(17) 

In Eq. (17) kBT and κT are the Boltzmann factor and
isothermal compressibility factor, respectively; ξζ and ξ are
the correlation lengths of density and concentration
fluctuations, respectively and g is the mean molar Gibbs free
energy of the mixture. In general Sζ is small compared to SC

and negligibly small in the critical region of a binary liquid
mixture. This is due to the fact that κT is finite whereas 
becomes infinite. Thus, we only consider the correlation
function of concentration fluctuations especially in the
critical region of the mixture.

Referring the detailed derivation to Ref. 7,  is the
forward component of the macroscopic polarizability
density tensor of the mixture, which is given as 
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 (20)

 and  are the second and third order polarizability
constants of the chiral solute molecule, respectively;  is
the second order polarizability constant of the solvent
molecule;  and  are the Kronecker delta and Levi-
Civita tensor, respectively and the explicit forms of the
function f (ak, aω) and propagators,  and K1 are K2

given in ref. 3. 

Results

First let us assume that the light varies slowly over the
molecular dimension. This assumption is obviously valid in
the nonresonant frequency region where the frequency
dependence of the molecular polarizability tensors can be
neglected and thus it can be said that the constants are real in
the nonresonant region. Since the light intensity was
discussed in detail,8 the phase changes are obtained. The
antisymmetric part  is responsible for the changes
of ellipticity and azimuth in an isotropic chiral fluid. With
the aid of the explicit forms of propagators and Eq. (17), we
may obtain the following results.

(A). The ellipticity change
The ellipticity change is given as

(21) 
 

where the antisymmetric property of  is used and 

(22)

 × 

 (23) 

with 

(24) 

When the above result is obtained, we have used the fact that
if ak, aω << 1 the function  and the
dielectric constant at equilibrium ε0 is given as
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the light in vacuum, since the light velocity in vacuum is
taken to be unity. The limiting properties of [∆η] are as
follows:
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When the fluid is far from the critical point, the azimuth is
proportional to ω5 and isothermal compressibility factor κ. 

(ii). In the extreme critical region where, 
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divergence in the extremely critical region extremely close to
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(B). The azimuth change, ∆θ(ω) in the critical region is
given by
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× 

(32)

where  is given in Eq. (22) and  is the absolute value of
t defined as

. (33)

The limiting properties of  are as follows:
(i) When ,  dominates over

. Its magnitude may account to one-tenth of
, depending on the Debye persistence length R

defined by .
(ii) When p>>1,  becomes important. In the case

of , we have 

(34)

which may become comparable to or larger than . It
is due to the indirect coupling between two fluctuating parts
of dipole densities via the equilibrium part of quadrupole
density in the middle. In the extreme case where ,
we have 

(35) 

The above result is independent of . Its magnitude may
become comparable to or larger than the term due to the
molecular contribution, , depending on the Debye
persistence length.

Conclusions

The effect of concentration fluctuations has been in detail
obtained on the phase changes for a forward-scattered light

in a binary chiral liquid mixture, when the incident light is
completely linearly polarized above(or below) the horizontal
at 45o. Let us summarize some important results:

(1). When the binary liquid is in the critical region far
from the critical point, the ellipticity change is proportional
to isothermal compressibility factor and the fifth order of
frequency (see Eq. (27)). As the system approaches very
close to the critical point , the change is proportional to the
third order of frequency and shows the logarithmic
divergence (Eq. 28). This divergence should not be taken too
seriously, since in the extreme critical region we must
account for the eventual departure from the Ornstein-
Zernike approximation.9

(2). In the case that the system is in the critical region far
from the critical point, the azimuth change is solely due to
the molecular contribution, as shown in Eq. (30). As the
system approaches to the critical point, the effect of
fluctuations becomes important. If it is in the extreme close
to the critical point, the term due to the concentration
fluctuations is comparable to or larger than the molecular
contribution (see Eq. (35)).
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