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The Time Correlation Functions of Concentration Fluctuations in the
Lotka Model near the Oscillatory Marginal Steady State
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The time correlation functions of concentration fluctuations due to the random forces near the steady state are evaluated for
a general two-component nonlinear chemical system by solving the corresponding two dimensional Fokker-Planck equation.
The approximate method of solving the Fokker-Planck equation is based on the eigenfunction expansion and the correspon-
ding eigenvalues for both the linear and nonlinear Fokker-Planck operators are obtained near the steady state. The general
results are applied to the Lotka model near the oscillatory marginal steady state and the comparison is made between linear

and nonlinear cases.

Introduction

Various kinds of approximate methods®”, such as size ex-
pansion’, time scaling”®, mode-mode coupling”, dynamic re-
normalization® and etc.®”, have been used to discuss the
dynamic phenomena for a single component nonlinear che-
mical system, starting from a Langevin equation, Fokker-
Planck equation or other equations. It is, however, much
more complicated to obtaine the dynamic properties for a
multicomponent system than for a single component system.

The purpose of the present paper is to obtain the time cor-
relation function of concentration fluctuations near a steady
state for general two component nonlinear chemical system,
assuming that chemical species obey a Langevin equation.
The method to be used is the response theory”®, which is one
of the most effective methods. Then, applying the general re-
sults to a specific reaction model with instability, that is, the
Lotka model'®, we discuss the time correlation functions be-
tween the fluctuating parts of concentration near the oscil-
latory marginal stable steady state.

At first, we restrict ourselves to the linear Langevin equa-
tion. In order to discuss the time correlation function near a
steady state(or equilibrium) we have to obtain the eigenvalue

and probability distribution of the linear Fokker-Planck
equation. The easiest method in our opinion is the operator
method as in quantum mechanics.”®!! We diagonalize the
linear Langevin equation with the aid of a suitable eigenvec-
tor? and obtain the corresponding linear Fokker-Planck equa-
tion. We introduce a function so that the Fokker-Planck
equation is transformed into a time-dependent Schrédinger
equation.” Using the creation and annihilation operators”®!},
it can be shown that the probability distribution can be exp-
ressed in terms of the coupled Hermite polynomials. With
the aid of the eigenfunction we may obtain the solvable re-
currence formulae for the eigenvalues of the Fokker-Planck
equation in any order of coupling. Then, we extend the linear
theory to the nonlinear case to obtain the eigenvalue of the
nonlinear Fokker-Planck equation. In the nonlinear case it is
only possible to obtain the eigenvalue up to the first order of
the coupling. Nevertheless, we may discuss the nonlinear ef-
fect on the time correlation functions near a steady state.

Finally, the general results for the correlatior. functions
are applied to the Lotka model to obtain the correlation fun-
ctions between the fluctuating parts due to the random for-
ces at the oscillatory marginal steady state.
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Theory

Let us consider a general nonlinear system of two vari-
ables, y; and y,, which satisfies the following Langevin equa-
tion

‘:iit (yl, yz)TZM(yx, yz)r+y|’ (flv 8’1)T+y:yz (fz, gz)T
+y: (fa-gs)T+ (§IY§2)Tv 2.1

where the matrix M is given as
a b
M= 2.2
[ c d]

and the random forces £;’s, are assumed to satisfy the Gaus-
sian conditions™

&, (t))=0, &, M&WH=2Dus,00~t). (2.3)

The f;’s and g;'s are assumed constants, Dj is the diffusion
coefficient, &, is the Kronecker delta, and & (/-¢*) is the Dirac
delta function. The Fokker-Planck equation for the probabili-
ty distribution, P(y;, v, 1), corresponding to eq.(2.1) is

gp(yl, Y, t)=EP(y,, 45, t) ;

az
A;[_ Y. u; ) Du ;ay: ]
(i,j=1 or 2), (2.4)

where Z; is the 7-th component of the drift vector term in eq.
(2.1). At a steady state or equilibrium we have

g'tpo (yh yz)

EP(y,, ¥, ¢

=EZP,(y,, y.) =0, (2.5)

where P, is the probability distribution at a steady state or
equilibrium. The Fokker-Planck equation under the influ-
ence of an external perturbation may be descrihed as™*

P(y,,y,,t)=[5+5’ ()P (y,, ys t), (2.6)

ot
where Z°(#) is the perturbation term given as
& (t) = BF (). 2.7)

Here, B is an operator with respect to y; and y, and F() is a
given function of time.

The system is assumed to be in a steady state or equilib-
rium at { =-~. To ensure the initial condition we switch on
the perturbation at # = -« adiabatically so that 5 at ¢ = -« is
zero. If the perturbation is small, we may obtain up to the
first order approximation as follows

v _ .
Py ys ) =Pulyiy) + [ dexp(5t-1"))
*BF ()P (y,, y,, t). (2.8)

Using the first order approximation, the average value of an
observable represented by a quantity A at time #is

A=t [ Gut-t)Fw)dr, (2.9)

where G,g(#-t') is the retarded Green function or response
function defined as
Gut-t)=060—-t') (Aly, y)exp(E(t-1)]
‘:{\B(yl- yz)>o. (2.10)
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the Heaviside unit step function 6(x) being given as
1 for x>0
0 for 2 <0,

and <--->; is the equilibrium ensemble average over the dis-
tribution. Using the stationary assumption, the time correla-
tion function between A and B, C (1), is related to the retar-
ded Green function as follows:

Gu(t)=6(t) Cuylt). (2.12)

From the retarded Green function we may obtain the other
dynamic properties. In order to obtain the explicit form of
the time correlation function, we shall use the method to dia-
gonalize eq.(2.1) and introduce the creation and annihilation
operators. At first, we shall restrict ourselves to the linear
case and then extend the linear result to the nonlinear case.

g (x) = { 2. 11

(A) Linear case

Let us consider the linear case of eq.(2.1) in this section.
The linear stability of the system depends on the eigenvalue
of the matrix, M:

(a) If all the real parts of the eigenvalues are negative, the
system is stable.

(b) When at least one of the real parts of the eigenvalues is
positive, the system is unstable.

{c) If a real part of an eigenvalue is zero, the system is at a
state of marginal stability. When det M = 0, the state of mar-
ginal stability is called as the state of nonoscillatory marginal
stability, while tr M = 0 and det M>0 is the condition for the
state of oscillatory marginal stability. We shall consider the
system at a stable state or the state of oscillatory marginal
stability.

Let the eigenvalue of M and its corresponding right and
left eigenvectors be -4, ¥ and T, respectively. Then, the ei-
genvalues and eigenvectors are given as®

A=a+f8, A;=a-f, (Red, = 0),

1 Tt -b .
Fi=gp (LAHDT T= (L g,
{i=1 or 2) (2.13)
where

a=—%trM20, B=(a'—detM)}.  (2.14)

It can be easily checked that the eigenvectors satisfy the or-
thonormalization conditions

%T&W,’,z b‘u, ZW,,% 303 (2 15)
With the aid of eq.(2.13), the linear part of q.(2.1) reduces to

Ex,=—/\,x,+§;, {i=1 or 2), (2. 16)
where
b b
xx=y1—myz, xzzyl_myZv

;_ b
§1=§6,— X +d§z, &= 5.—m§z (2.17)
The Fokker-Planck equation corresponding to eq.(2.16) be-

comes
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'a’aEP(xpxz:t):EoP(xuxzt)=_/\P(xl:xz’t) 5

2

So ax "‘+A‘ar, Hdug, z+d“é"=+2d" ax o1,
(2.18)
where
_ _ b
nm-_ <§’1 (t)ﬁ (t)>_D1|+ (/\,+d) D:z.
b2
du“dn_<§/l(t)f;(t)> D“+(A +d) (A2_+_d)Dn,
b
dn=<§/2 (t)gg(t)>=D11+(Az—_r&—)an. (2 19)
Let us introduce a new function defined as”®
Ig(zl,zz,t)=exp[ji—(21’+z§)]P(zuz,,t), (2. 20)
where
Agya
z,= (7)1, 2.21)
it

Then, eq.(2.18) becomes

L P2y, 25 1) = 5o Pz, 25, 1) = ~AP(zy, 25, 1) 3
_- 1 2 2\ = 1 2 2
:o=exp[7(zl+zz)]:oexp[—I(z,+zz)], (2.22)

Introducing the creation and annihilation operators with res-

pect to z; and 2, as™®!
a= ai}-%é—z,, at=— 8az,+%z"
B=%+%z" b= - a%ﬁ%“' (2.23)
we have
S.=—Aata —Abvh +2[d"Ad“J‘a*b* (2. 24)

H 22

The operators satisfy the following commutation relations:
(a,a*)=1, (b,b*)=1, (a*, b)= (a*, b") = (a, b)
(2.25)

Let the eigenfunctions of @ *¢ and b*b be Pn1(21 ) and
P, (z,), respectively. Then, we have

1 _
4P, (z,)=niPs_, (2,),
%

a*f)m (21) = (n +1)
(2. 26)

ol

bPy(z,) = i Py (z,),

b+15nz(zz)= (nz+1)f}3m+l(22)r

where n;’s are zero or positive integers and the elgenfunc
tions may be expressed in terms of the Hermite polynomlals

Pale) =g aragae (- e Halgia)
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—(_ n l 2 i’i _i H
H,(z)=(-1) exp(zz)dz,,exp( 22). (2.27)
The solution of €q.(2.22) may be written as
}—D(zn 22, t) = n;.‘r);_:;ocm'm
XexP( A11 nal )P ( )P (z ) (2 28)

The above solution shows that the eigenfunctions are coupl-
ed each other through C,, ,, and A, »,. let N'be n; +#,. Then,
€q.(2.28) can be rewritten as

Play 2, t)= £ I Chexp (= Au_mat) Py_n(2)) Pulzy),
(2.29)

where
Cponn=Ci(NZnZ0). (2. 30)

Now, let us obtain the eigenvalue of ::0‘ Substitution of
egs.(2.24) and (2.29) into eq.(2.22) leads to

. Z 00 N=n) 21— 44l CiPyon(2) Pa(22)

_2(_;_*‘;&) X | (N+1—n) (a+1)IF Cy?
XPN+[ a(zy) n+1(zz)] 0.

{2.31)
Assuming that N is the maximum order, we may split eq.
(2.31) into two parts, that is,

(A, (N=n) + A;n— Ay_nn)CE=0,if N is 0 or 1,
(2. 32)
3 1
(A (N~n)+,\,n—-/\~_mjc,’:—z(%ﬁ)!
1122
X{(N=n+1) (n+1))7CY, = 2.33)

when N>2.

From eq.(2.32) we can see that N =0 describes the steady
state or equilibrium of the system. As will be shown in the
next section we do not have to consider the case of N>2 to ob-
tain the time correlation functions explicitly near a steady
state. From eq.(2.32) we obtain the following eigenvalues

forN=1
A=Ay Ag1 = A, (2 34)

We shall extend the linear theory to the nonlinear case in the
next section.

(B) Nonlinear case

The Fokker-Planck equation given in eq.(2.4) may be
given as, using eq.(2.17),

3 -
aP(x,, x5, 1) =EP(x,,x,, 1)

e = =
E=E,+ Ey

(2. 35)

where Z, is the linear operator already discussed and Zy is
the nonlinear operator given as follows

—
- = —
-

/x11+fz/xlxz+f;x;)
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- o (el el g mr i x) (2. 36)
jo= (Rt Aty g Ay
fl=- (,\H(r/\rll).(i;rd) f.+ A,+/\b,+2df2
+2(A,+db)z(,l,+d) £)
£ =( AIA_—I-d) O, + Ay 2—de+ </\ +d) £)

and we may obtain g;’ 's by replacing f; by g; Using the same
method as in the linear case, we have

where Z, corresponds to the result given in eq.(2.24) and Ey
is

Eu- - @ +al) (‘%)*(a++a)— Ui +26) (G b +D)

A du d,.
R 1 1 -
_+_(d11dzz) (a*+a) ( +b){(%)rf{ﬁ++('&1)rg{b+§
/\1/\1 11 22

G G ()t () e 2,39

Assuming that the eigenfunction of eq.(2.37) is the same as
that for the linear case, the eigenvalues for N<1 are

) (f‘+/\d ) Aoy = Az,

(2.39)

The time correlation function C,,(f) near the steady state
may be evaluated from the following expression:

Cy;y; (1) = (y,exp(Et)y, )0

j:wdyldy,y,exp (Et)y!Po,a (yh yz)

00=0, Aio =2 Tt

11

- (2. 40)
[mdyldszo.u (yhyz)
The results become
Cys, <t>=(—héx)—,m.+d>*(‘%)«zxp(—A...,z)
+ (et ) () exp (= Aant),
Con (1) = Gy (1) = B Ad 1y ) (%)
exp (= Aat) + (Ma+d) (42) exp (= oat)),
: ©. 41)
Capsy ()= (1AL D)y2 Qoo (ot
+%’—:exp( Ao, t))
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We can apply the results to any two-component chemical
system. In the next section we will discuss the Lotka model
which is a chemical reaction model with instability.

Application to the Lotka Model

The Lotka model is a model of chemical reaction mech-
anism showing the sustained oscillation, which is given by?®
A+x - oox,,

X, +x, -t 2x,,

x, ko p

(3.1)

where k;’s are the rate constants, the concentration of the
reactant A is kept to be constant and X; and X are the inter-
mediates. The rate equations for the intermediates are

;:X k AX, - k. X, X,+ &1,
d (3.2)
EX2= —k.\Xz+kzX1Xz+ 5:-
with the nontrivial steady state value
o_ ks kA
X! g X! = k, (3.3)

Expansion of €q.(3.2) in terms of y{#) = X{#)-X;" leads to

d 0 -k
a—t(yl, yz)7={Ak 6 ](yl,yz)’+k1ylyz(-1, T
1

+ (&, &7 3.4)

The time correlation function for the Lotka model near
the steady state can be obtained explicitly from eq.(2.40) to
give
id

Cyy s, (1) === [exp (= A;,0t) —exp (= A, )],
4 w,
d
C;vly2 (t)zﬁ[exP("/\x.ot)+exP(— /\o.\t)], (3-5)
3
- Ak
Cy,s, ()= R 1Cy, 5, (1),
where
wo= (Ak;ks)%, d"=MA:_k_3D_" (3.6)
Ak,

At first, let us consider the linear case. The steady state of
the Lotka model is marginally oscillatory. The eigenvalues
for the linear case obtained in eq.(2.34) can be evaluated us-
ing eq.(3.4) and the corresponding time correlation functions
are obtained as follows:

Sin(wot),

Capsy (1) = 522

Cops, ()= Capo, (0= Sk cos (), 3.7)

Ak

Cy,y, (t) = ':Ea-lcyl » (t)v

It is natural that the time correlation functions undergo sus-
tained oscillation at the marginally stable steady state. As
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shown in the mechanism of the Lotka model, the intermedi-
ate X, is related to X, through the feedback step. Even
though the feedback step has indirect influence on the cor-
relation functions through the value of the steady state, it
controls the ratio of C,,,,(¢) over Cyy,(8) to be Ak / k; at any
time.

Including the nonlinear terms, we obtain the following ei-
genvalues:

— — ‘M A _ wokzzdn‘%
Aro ( 8/&7; )21 {we— ( 8k§ ],
Ao.1=,{2=—iwo, (3.8)

The effect of the nonlinear terms is to make one of the modes
increase or decrease in an oscillatory fashion depending on
the value of @,,. If d,,>0, the mode with A, , increases oscil-
latorily. It diverges as time goes to infinity. This means that
we have to consider the higher order approximation to dis-
cuss the nonlinear effect. In the present paper, however, we
have restricted ourselves to the first order approximation.
Thus, we consider only the case of d,;<0. When d,,<0, the
mode with A, decreases oscillatorily and the time corre-
lation functions after long time become

Cy 5 (8) = ldy | exp (i ((Uot_?”)],

4 Wo
Cylyz (t) 4k exp(i(wot ~ )], .
3
. - Ak
Cyzyz(t): k 1Cylyl (t)
3

The same argument for the linear system may be applied to
the nonlinear case. We shall extend the present theory to

Minjoong Yoon et al.

describe the dynamic phenomena of negative(and positive)
metabolic control circuits'®*? in the forthcoming papers.
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The pH dependence studies of Raman spectra are reported for water-soluble free-base, Zn, Co and Cu tetrakis (4-sulfonato-
phenyl) porphine in pH 4, pH 7 and pH 13.9 aqueous solution. For free base porphine, the substantial differences are found in
absorption and Raman spectra between pH 4 and pH 7 or pH 10 aqueous solutions due to the protonation at low pH. For Zn
and Co porphyrins, the hydrolysis equilibrium constants are obtained by spectrophotometric titration experiments. The
consistent shifts in Raman frequencies are found at high pH due to the hydrolysis. For Cu porphyrins, instead of hydrolysis
the aggregation effect is detected at high pH through the absorption and Ramsn studies.

Introduction

For many years, the porphyrin has been one of the central

interests in the photochemistry in view of its important roles
in photosynthesis'? and its potential utility as sensitizer in
photochemical system for solar-energy conversion.® Water



