BULLETIN

OF THE

KOREAN CHEMICAL SOCIETY

ISSN 0253-2964 Volume 23, Number 12 BKCSDE 23(12) 1689-1884 December 20, 2002

Communications

A Simple and Efficient Synthesis of near Enantiopure β -Hydroxy Nitriles

Byung Tae Cho,* Sang Kyu Kang, and Sung Hye Shin

Department of Chemistry, Hallym University, Chunchon, Gangwon-Do 200-702, Korea Received November 15, 2002

Key Words : Chiral β -hydroxy nitriles, Asymmetric reduction, Chiral 1,2-diol monotosylates

Optically active β -hydroxy nitriles 2 are extremely useful precursors for the synthesis of non-racemic β -hydroxy acids and γ -amino alcohols. They are also of great importance as chiral building blocks for the synthesis of a variety of natural products¹ and chiral drugs² because the cyano group can be easily converted into carbonyl and amino groups.³ For the synthesis of 2, only few reports including biological methods, such as bio-reduction of β -keto nitriles⁴ and enzymatic hydrolysis of acetates of racemic 2,⁵ enantioselective addition of cyanomethylzinc bromide to aldehydes⁶ and regioselective ring opening of chiral styrene oxide with acetone cyanohydrin^{2c} have been published. Among these, baker's veast-mediated reduction of β -keto nitriles was generally accompanied by the formation of a significant amount of α ethylated β -keto nitriles as side-products,^{4c-e} and the enantioselectivitity obtained from the same reduction using a fungus cell was highly dependent on the structure of the substrates. For example, the reduction of 2-cyano-1-phenylethanone and 2-cyano-1-(*m*-chlorophenyl)ethanone afforded the corresponding β -hydroxy nitriles with 96% ee and 97% ee respectively, whereas the reduction of 2-cvano-1-(p-chlorophenyl)ethanone provided the product β -hydroxy nitrile with only 50% ee.4a Enzymatic resolution methods of racemic mixture suffers from providing intrinsic limitation where the maximum yield of one enantiomer from the starting material is only 50%.^{5a} In the case of enantioselective cyanomethylation of aldehydes, it requires not only a stochiometic amount of chiral ligand to obtain high enantioselectivity, but also provides only moderate yields (45-82%) due to the low reactivity of the zinc reagent used.⁶ Recently, we reported a convenient synthesis of optically active 1,2-diol monotosylates 1 with high optical purities via oxazaborolidine-catalyzed borane reduction of α -sulfonyloxyketones.⁷ These findings

encouraged us to develop a new method for the preparation of optically active **2** starting from **1** by nucleophilic displacement with NaCN.

To determine the optimum reaction conditions, the nucleophilic displacement by reaction of (S)-1 (99% ee) with 1.5 equiv. of NaCN has bee investigated in DMSO at 80 °C (method A), in water at 100 °C in the presence of 1 mol% of phase-transfer catalysts (PTC), such as cetyltrimethylammonium bromide and tributylhexadecylphosphonium bromide (method B and C) and in water at 100 °C (method D). Of the methods employed, method A provided the best results to give product 2a in 98% yield. Methods B-D using water as solvent afforded somewhat low yields with the formation of 1-phenyl-1,2-ethanediol as a side-product, although use of PTC increased rate of the reaction dramatically to give the desired product (method B). Enantiomeric excess (ee) of the product 2a determined by HPLC analysis using Whelk-O1 chiral column showed it to be 99% ee. The results summarized in Table 1 indicate that no racemization occurs under these conditions. Using method A, we carried out cvanation reaction of other optically active 1,2-diol monotosylates 1. As shown in Scheme 1 and Table 1, all the reaction proceeded smoothly to give optically active β hydroxy nitriles 2 in high yields.⁸ For aromatic analogues **2b-h** bearing *p*-tolyl, *p*-methoxyphenyl, *m*-chlorophenyl, *p*-

Scheme 1

Entry	R	Method	Time	$\text{Yield}^{b}(\%)$	$[\alpha]_{\rm D}^{20}$ (<i>c</i> , solvent)	Max. values reported	$\% ee^d$	Config.
1	2a	А	<10 min	98	+56.1 (0.9, EtOH)	57.7 (2.6, CHCl ₃), 96% ee, S ^{4a}	99	R
2	2a	В	10 min	80	c		99	R
3	2a	С	60 min	77	c		99	R
4	2a	D	900 min	57	c		99	R
5	2b	А	<10 min	96	+65.8 (1.09, CHCl ₃)	-53.4 (1.5, CHCl ₃), 82% ee, S ^{4a}	99	R
6	2c	А	<10 min	97	+69.9 (0.5, CHCl ₃)	-59.7 (0.6, CHCl ₃), 83% ee, S ^{4a}	99	R
7	2d	А	<10 min	98	+52.1 (0.84, CHCl ₃)	-56.8 (1.3, CHCl ₃), 97% ee, S ^{4a}	99 ^e	R
8	2e	А	<10 min	96	+57.6 (0.8, CHCl ₃)	-52.1 (0.7, CHCl ₃), 50% ee, ^{4a} S	99	R
9	2f	А	<10 min	97	+40.5 (0.5, CHCl ₃)	-37.2 (0.8, CHCl ₃), 92% ee, S ^{4a}	99 ^e	R
10	2g	А	<10 min	94	+53.7 (0.86, EtOH)		99	R^{i}
11	2h	А	20 min	98	+59.5 (0.5, EtOH)	-52.7 (1.04, EtOH), 87% ee, S ⁶	99	R
12	2i	А	<10 min	95		+21.1 (1.18, EtOH)	99 ^f	$S^{i,j}$
13	2ј	А	<10 min	90	+48.6 (0.54, CHCl ₃)	-32.2 (0.6, CHCl ₃), 83% ee, S ^{4a}	98^g	R
14	2k	А	<10 min	93	+9.2 (0.55, CHCl ₃)	-9.4 (0.9, CHCl ₃), 88% ee, S ^{4a}	99^h	R

Table 1. Preparation of Chiral β -Hydroxy Nitriles 2 from 1,2-Diol Monotosylates 1

^{*a*}Reaction of (*S*)-1 with NaCN (1.5 eq) was carried out in the following methods: Method A: DMSO, 80 °C; Method B: n-C₁₆H₃₃Me₃N⁺Br⁻ (1 mol%), H₂O, 100 °C; Method C: n-C₁₆H₃₃(n-Bu)₃P⁺Br⁻, H₂O, 100 °C; Method D: H₂O, 100 °C. ^{*b*}Isoalted and purified yield. ^cNot measured. ^{*d*}Determined by HPLC analysis using a Whelk-O1 column [*iso*-PrOH/hexane: 1/9; flow rate: 0.5 mL/min; detector: 254 nm], unless otherwise indicated. ^{*c*}Determined by HPLC analysis using a Chiralcel OD-H column [*iso*-PrOH/hexane: 1/9; flow rate: 1.0 mL/min; detector: 254 nm]. ^{*f*}Determined by HPLC analysis of its benzoate using a Chiralcel OD column [*iso*-PrOH/hexane: 1/9; flow rate: 1.0 mL/min; detector: 254 nm]. ^{*f*}Determined by GC analysis using a 25 m β -Dex 120 chiral column [105 °C isothermal]. ^{*h*}Determined by GC analysis using a 25 m α -Dex 120 chiral column [160 °C isothermal]. ^{*i*}Assigned by analogy. ^{*j*}By sequence rule.

chlorophenyl, 3,4-dichlorophenyl, *p*-fluorophenyl and 2naphthyl, near enantiomerically pure products were obtained. We also obtained heterocyclic and aliphatic β -hydroxy nitriles **2i-k** in excellent enantiomeric purity.

In conclusion, we have developed a highly efficient synthetic method for optically active β -hydroxy nitriles which can be widely used as starting materials for preparation of γ amino alcohols and β -hydroxy acids by employing nucleophilic substitution reaction of chiral 1,2-diol monotosylates with sodium cyanide. It is noteworthy that this method provides near enantiopure β -hydroxy nitriles in aromatic, heterocyclic and aliphatic analogues.

Acknowledgment. This study was supported by the Hallym Academy of Sciences at Hallym University (2002-21-01), Korea.

References and Notes

- See, for examples: (a) Keegan, D. V.; Hagen, S. R.; Johnson, D. A. *Tetrahedron: Asymmetry* **1996**, *7*, 3559. (b) Taber, D. F.; Wang, Y. *J. Am. Chem. Soc.* **1997**, *119*, 22. (c) Utaka, M.; Watabu, H.; Higashi, H.; Sakai, T.; Tsuboi, S.; Torii, S. *J. Org. Chem.* **1990**, *55*, 3917. (c) Zhou, B.; Gopalan, A. S.; VanMiddlesworth, F.; Shieh, W.-R.; Sih, C. J. *J. Am. Chem. Soc.* **1983**, *105*, 5925.
- (a) Antolini, L.; Forni, A.; Davoli, P.; Moretti, I.; Prati, F. *Tetrahedron: Asymmetry* **1998**, *9*, 285. (b) Koenig, T. M.; Mitchell, D. *Tetrahedron Lett.* **1994**, *35*, 1339. (c) Mitchell, D.; Koenig, T. M. *Synth. Commun.* **1995**, *25*, 1231.
- (a) Ogliaruso, M. A.; Wolfe, J. F. In *Comprehensive Organic Functional Group Transformations*; Kartritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Eds.; Pergamon Press: Oxford, 1995; Vol. 5, pp 23-120. (b) Marson, C. M.; Hobson, A. D. In *Comprehensive Organic Functional Group Transformations*; Kartritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Eds.; Pergamon Press: Oxford, 1995; Vol. 2, pp 297-332.
- 4. (a) Dehli, J. R.; Gotor, V. *Tetrahedron: Asymmetry* 2000, *11*, 3693.
 (b) Gotor, V.; Dehli, J. R.; Rebolledo, F. J. *Chem. Soc. Perkin Trans.* 1 2000, 307. (c) Smallridge, A. J.; Ten, A.; Trewhella, M.

A. *Tetrahedron Lett.* **1998**, *39*, 5121. (d) Itoh, T.; Takagi, Y.; Fujisawa, T. *Tetrahedron Lett.* **1989**, *30*, 3811. (e) Itoh, T.; Fukuda, T.; Fujisawa, T. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 3851.

- (a) Itoh, T.; Mitsukura, K.; Kanphai, W.; Takagi, Y.; Kihara, H.; Tsukube, H. J. Org. Chem. **1997**, 62, 9165. (b) Itoh, T.; Takagi, Y.; Nishiyama, S. J. Org. Chem. **1991**, 56, 1521.
- 6. Soai, K.; Hirose, Y.; Sakata, S. Tetrahedron: Asymmetry 1992, 3, 677.
- Cho, B. T.; Yang, W. K.; Choi, O. K. J. Chem. Soc. Perkin Trans. 1 2001, 1204.
- 8. Representative procedure for preparation of 4 (Method A). A mixture of (S)-1 (2 mmol) and sodium cyanide (3 mmol) in DMSO (4 mL) was heated at 80 °C for 10 min and then cooled to room temperature. To this was added water (4 mL) and the mixture was extracted with CH_2Cl_2 (3 × 5 mL). The combined extracts were dried over anhydrous MgSO4, filtered and concentrated. The crude β -hydroxy nitriles (S)-2 obtained were purified further by flash column chromatography on silica gel (230-400 mesh) using ethyl acetate-hexane (1:2). All of β hydroxy nitriles 2 obtained are known compounds except 2g and 2i. All spectroscopic data (¹H, ¹³C NMR and IR) of the known compounds obtained in this study are good agreement with those of literature data.^{4a} (**R**)-2g: pale yellowish oil (R_f 0.20); yield: 0.31 g (94%); IR (neat): 3429, 2964, 2247, 1606, 1512, 1227 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 2.62 (br s, 1H), 2.75 (d, 2H, J = 6.10Hz), 5.04 (t, 1H, J = 6.10 Hz), 7.05-7.15 (m, 2H), 7.32-7.43 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 28.7, 70.3, 116.4, 117.7, 128.1, 137.5, 161.1. Anal. Calcd for C9H8FNO: C, 65.45; H, 4.88; N, 8.48. Found: C, 65.55; H, 4.94; N, 8.53; $[\alpha]_{D}^{20} = 53.7$ (c 0.86, EtOH); HPLC analysis using a Whelk-O1 chiral column (iso PrOH/hexane 1/9; flow rate: 0.5 mL/min; detector: 254 nm) showed it to be 99% ee. [$t_R(R)$: 16.05 min; $t_R(S)$: 17.95 min]. (S)-**2i**: pale yellowish oil (R_f 0.30); yield: 0.29 g (95%); IR (neat): 3411, 2988, 2237, 1658, 1629, 1407, 1063, 1039 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 2.74 (d, 1H, J = 3.05 Hz), 2.88 (d, 2H, J = 6.41 Hz), 5.30 (m, 1H), 6.99-7.11 (m, 2H), 7.33 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 28.8, 66.9, 117.6, 125.5, 126.6, 127.8, 145.1. Anal. Calcd for C7H7NOS: C, 54.88; H, 4.61; N, 9.14; S, 20.93. Found: C, 54.92; H, 4.76; N, 9.09; S, 20.76; $[\alpha]_{D}^{20} = 21.1$ (c 1.18, EtOH); HPLC analysis of its benzoate using a Chiralcel OD chiral column (i-PrOH/hexane 1/9; flow rate: 1.0 mL/min; detector: 254 nm) showed it to be 99% ee. [$t_R(S)$: 20.79 min; t_R (R): 35.88 min].