Preparation and Magnetic Properties of a Neutral Octadecanuclear Manganese Complex $\left[\mathbf{M n}^{\mathrm{II}} \mathbf{4}^{\mathbf{M n}}{ }^{\mathrm{III}}{ }_{14}(\mathrm{O})_{14}\left(\mathrm{O}_{\mathbf{2}} \mathrm{CMe}\right)_{18}(\mathrm{hmp})_{4}(\mathrm{hmpH})_{2}\left(\mathbf{H}_{2} \mathrm{O}\right)_{2}\right]$

Akhilesh K. Gupta, Seokwon Yoon, ${ }^{\dagger}$ Myoung Soo Lah, ${ }^{\dagger}$ and Jinkwon Kim ${ }^{*}$
Department of Chemistry, Kongju National University, 182 Shinkwan, Kongju, Chungnam 314-701, Korea
${ }^{\dagger}$ Department of Physics, The Catholic University of Korea, 43-1 Yoggok, Puchon 420-743, Korea
${ }^{\ddagger}$ Department of Chemistry, Hanyang University, 1271 Sa-1-dong, Ansan, Gyunggi 425-791, Korea Received January 15, 2004

Key Words : Manganese complex, Metal cluster, Magnetic properties

The synthesis of a magnetic molecule having unusually large spin value and large negative anisotropy value is an area of intensive current research, because it is the prerequisite for developing the emerging class of single-molecule magnets (SMMs). SMMs, nanometer-size single-domain magnetic clusters, have been found to display intramolecular magnetic hysteresis loop due to very slow magnetic relaxation below their blocking temperature as well as steps in the hysteresis loop assigned to the presence of quantum tunneling of the magnetization. ${ }^{1}$ Since the dodecanulear manganese cluster with the composition $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{16^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (Mn12ac) had been discovered as an singlemolecule magnet, ${ }^{2,3}$ many efforts have been made to achieve larger cluster compounds showing SMM behaviors. ${ }^{4}$ Especially, manganese carboxylate cluster chemistry has proved to be a rich source of a variety of polynuclear species. ${ }^{5,6}$ Specific examples of SMMs except Mn12ac include the tetranuclear cubane $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{Mn}^{\mathrm{III}}{ }_{3} \mathrm{O}_{3} \mathrm{X}\right]^{6+}$ core ${ }^{7}$ and $\left[\mathrm{Fe}_{4}(\text { sae })_{4}-\right.$ $\left.(\mathrm{MeOH})_{4}\right]\left(\mathrm{sae}=2\right.$-salicylidene-amino-1-ethanol), ${ }^{8}$ the octanuclear $\mathrm{Fe}(\mathrm{IIII})$ cluster $\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OH})_{12}(\operatorname{tacn})_{6}\right]^{8+}(\operatorname{tacn}=$ tetraazacyclononane), ${ }^{9}$ and the tetranuclear butterfly complex $\left[\mathrm{V}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{7}(\mathrm{~L})_{2}\right] \mathrm{n}+\left(\mathrm{L}=\right.$ bipyridine or picolinate). ${ }^{10}$ Recently, a new family of manganese-based SMMs , such as $\left[\mathrm{Mn}_{7}-\right.$ $\left.(\mathrm{OH})_{3} \mathrm{Cl}_{3}(\mathrm{hmp})_{9}\right]^{2+}$ and $\left[\mathrm{Mn}_{12} \mathrm{O}_{8} \mathrm{X}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{8} \mathrm{~L}_{8}\right]$, has been designed by using of hmp-bridging ligand (hmpH $=2$ hydroxymethylpyridine). ${ }^{11,12}$ On the other hand, oxidation of Mn (II) by MnO_{4}^{-}in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ leads to $\mathrm{Mn}_{2}{ }_{2} \mathrm{Mn}^{\mathrm{III}}{ }_{2}$ chain complex instead of Mn12 cluster. ${ }^{13}$ Thus we have been trying new oxidation reaction of $\mathrm{Mn}(\mathrm{II})$ by MnO_{4}^{-}in a presence of hmpH and obtained a new octadecanuclear mixed-valent Mn cluster of formula $\left[\mathrm{Mn}_{18} \mathrm{O}_{14}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{18-}\right.$ $\left.(\mathrm{hmp})_{4}(\mathrm{hmpH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathbf{1})$.
The synthesis of $\mathbf{1}$ was achieved by reaction of an aqueous slurry of one equivalent of $\mathrm{Mn}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in methylene chloride, 2.5 equivalents of $\mathrm{hmpH}, 0.5$ equivalents of $\mathrm{NBu}_{4}{ }^{\mathrm{n}} \mathrm{MnO}_{4}$ in a presence of carboxylic acid. $\mathrm{NBu}_{4}{ }^{\mathrm{n}} \mathrm{MnO}_{4}$ oxidizes $\mathrm{Mn}^{\text {II }}$ to $\mathrm{Mn}^{\text {III }}$ in presence of water and carboxylic acid.
An ORTEP diagram of $\mathbf{1}$ with atom labeling scheme is displayed in Figure 1. The centrosymmetric complex 1

[^0]

Figure 1. (a) ORTEP diagram of 1 with atom numbering scheme. (b) A side view emphasizing the planarity of $\left[\mathrm{Mn}_{10} \mathrm{O}_{6}\right]$ unit.
consists of $\left[\mathrm{Mn}_{18}\left(\mu_{3}-\mathrm{O}\right)_{10}\left(\mu_{4}-\mathrm{O}\right)_{4}\right]$ core with peripheral chelation provided by eighteen acetate ligands and six hmp^{-} ligands, and two terminal water molecules. On the basis of Jahn-Teller distortions and bond valence sum calculations, the seven manganese atoms (Mn1-Mn7) in a crystallographically asymmetric unit were assigned to $\mathrm{Mn}^{\mathrm{III}}$ and Mn 8 and Mn9 to $\mathrm{Mn}^{\mathrm{II}}$. The elongated axial $\mathrm{Mn}^{\text {III }}-\mathrm{O}$ distances (2.144(4)-2.456(4) A) are significantly longer than the other bonds (1.854(3)-1.977(4) \AA). The $\mathrm{Mn}^{\mathrm{II}}-\mathrm{O}$ bond distances are in a range from 2.104(4) \AA to $2.267(3) \AA$. As shown in the side view, ten manganese atoms from Mn 1 to Mn 5 and their

Figure 2. Temperature dependence of the $\chi_{M} T(\bullet)$ and $1 / \chi_{M}(\square)$ for 1 at 1000 Oe.
symmetry related partners are almost co-planar and comprise a central planar $\left[\mathrm{Mn}_{10}\left(\mathrm{~m}_{3}-\mathrm{O}\right)_{6}\right]$ unit. This planar $\left[\mathrm{Mn}_{10}\left(\mathrm{~m}_{3}-\mathrm{O}\right)_{6}\right]$ unit was also observed in the other Mn_{18} cluster $\left[\mathrm{Mn}_{18} \mathrm{O}_{16}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{22}(\text { phthalate })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{4-} .{ }^{14}$ Two $\mathrm{Mn}^{\text {III }}$ ions (Mn6, Mn7) are located above and below the $\left[\mathrm{Mn}_{10}\left(\mathrm{~m}_{3}-\right.\right.$ $\mathrm{O})_{6}$] plane and bridged by oxygen atoms to form a distorted cubane $\left[\mathrm{Mn}_{4}\left(\mathrm{O}_{\text {oxide }}\right)_{3}\left(\mathrm{O}_{\text {carboxylate }}\right)\right]$ unit $(\mathrm{Mn} 3, \mathrm{Mn} 4, \mathrm{Mn} 6$, Mn 7). The distance ($3.610(1) \AA$) between two $\mathrm{Mn}^{\mathrm{II}}$ ions is quite longer than the other $\mathrm{Mn}-\mathrm{Mn}$ distances (2.810(1)$3.211(1) \AA$). The octahedral geometry around $\mathrm{Mn}(8)$ is severely distorted such that the trans N1-Mn-O6 angle becomes $142.3(1)^{\circ}$. Charge considerations require protonation of two of oxygen donating ligands. Careful examination of structural parameters reveals that O29 is protonated and quite close to $\mathrm{O} 9(2.622 \AA)$ due to hydrogen bonds.

Magnetic susceptibility experiments were carried out on a powder sample 1 dried under air. TGA experiment indicates ca. three $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules exist even in a air-dried sample. The magnetic susceptibility data as a function of temperature, measured with an applied filed of 1 KG by using a SQUID magnetometer are displayed in Figure 2. $\chi_{M} T$ decreases almost linearly from $44.6 \mathrm{emuK} / \mathrm{mol}$ at 298 K to

Figure 3. Plot of $M / N \mu_{\mathrm{B}} v s H / T$ for 1.
$33.6 \mathrm{emuK} / \mathrm{mol}$ at 58 K . It is clear that there are strong intramolecular antiferromagnetic exchange interactions within complex 1 since $\chi_{M} T=59.5 \mathrm{emuK} / \mathrm{mol}$ is expected for an aggregate of noninteracting four $S=5 / 2$ and fourteen $S=2$. Below $\sim 50 \mathrm{~K}, \chi_{M} T$ drops faster down to $2.0 \mathrm{~K}(7.6 \mathrm{emuK} /$ mol) indicating the existence of antiferromagnetic intermolecular interactions and/or zero-field splitting effects. ${ }^{15}$ Magnetization data were collected in the ranges $40-50 \mathrm{kG}$ and $2.0-10.0 \mathrm{~K}$ and the reduce magnetization M / N_{B} is plotted as a function of H / T in Figure 3. The split of isofield lines shows that the zero-field splitting exists in the complex $\mathbf{1}$.

Also carried out were ac susceptibility measurements for the powder sample 1 in a 5.0 G ac field oscillating at $250-$ 1000 Hz in the temperature range of $2.0-10 \mathrm{~K}$. Preliminary results showed no out-of-phase ($\chi_{M}{ }^{\prime \prime}$) signals within the temperature range. However, G. Christou and his co-workers reported a new $\left[\mathrm{Mn}_{18}\right]^{2+}$ single-molecule magnet which has the same structure with our Mn_{18} complex but two $\mathrm{Mn}^{\mathrm{II}}$ ions are further oxidized to $\mathrm{Mn}^{\text {III }}$ compared to our Mn_{18} compound. ${ }^{16}$ The $\left[\mathrm{Mn}_{18}\right]^{2+}$ complex shows characteristics of single-molecule magnet such as temperature dependency of ac susceptibility in the $0.99-1.44 \mathrm{~K}$ region and magnetic hysteresis loop in the 0.04-1.0 K. The total ground spin value was estimated as $S=13$ which is unusually large spin for a molecular species. Furthermore, such SMM behaviors were observed in the smaller Mn_{12} cage which is also mixedvalent and consists of oxide and hmp^{-}bridging ligand. ${ }^{12}$ Based on these recent results, we expect our Mn_{18} cluster may exhibit single-molecule magnetic behavior below 2.0 K .

Experimental Section

General. Tetrabutylammonium permanganate was prepared by the previously reported methods. ${ }^{17,18}$ All other reagents were purchased from Aldrich Chemical Co. and Sigma Chemical Co. and were used as received.

Elemental analyses (C, H and N) were performed by Fisons EA 1110 analyzer. IR spectra were recorded as compressed KBr discs on a Perkin Elmer Model 983 spectrophotometer in $4000-400 \mathrm{~cm}^{-1}$ range. Dc and ac Magnetic susceptibility measurements were carried out using a Quantum design MPMSXL susceptometer well equipped with a 5 T magnet and operating in the range 2.0 to 300 K.

Synthesis. To an aqueous slurry of Mn (acetate) $)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(0.34 \mathrm{~g}, 1.63 \mathrm{mmol})$ in 1 mL water, a solution of hmpH $(0.4 \mathrm{~mL}, 4 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and followed by addition of 2 mL of acetic acid. The colorless reaction mixture was continuously stirred and treated with $\mathrm{NBu}_{4}{ }^{\mathrm{n}} \mathrm{MnO}_{4}(0.29 \mathrm{~g}, 0.815 \mathrm{mmol})$ portionwise within an interval of 10 min . The color of solution changes to dark brown. After 1 h , the solvent was removed in vacuo and the oily residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Addition of equivolume of hexane and slow evaporation at room temperature for two weeks yielded crystals of 1 suitable for X-ray crystallography. Elemental analyses have been done with samples dried overnight in vacuo. Compound 1: FTIR (KBr,

Table 1. Crystallographic data for complex 1

Empirical formula	$\mathrm{C}_{78} \mathrm{H}_{108} \mathrm{Cl}_{12} \mathrm{Mn}_{18} \mathrm{~N}_{6} \mathrm{O}_{58}$
Molecular weight	3472.02
Crystal system	Triclinic
Space group	$P \overline{1}$
$a(\AA)$	$14.411(1)$
$b(\AA)$	$15.177(1)$
$c(\AA)$	$15.729(1)$
$\alpha\left({ }^{\circ}\right)$	$70.328(2)$
$\beta\left({ }^{\circ}\right)$	$78.407(2)$
$\gamma\left({ }^{\circ}\right)$	$81.046(2)$
$V\left(\AA^{3}\right)$	$3159.0(5)$
Z	1
$\rho_{\text {calc }}\left(\mathrm{mg} \mathrm{m}^{3}\right)$	1.825
$F(000)$	1736
$\mu\left(\mathrm{~mm}^{-1}\right)$	2.072
Temperature (K)	$173(2)$
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	56.64
Transmission factor	$0.4911-0.8196$
Reflections collected	17933
Independent reflections	$13817\left[R_{\text {int }}=0.0424\right]$
Observed reflections $[I>2 \sigma(I)]$	8549
No. of parameters	815
$R_{1}, w R_{2}$, GOF	$0.0585,0.1349,1.006$

Table 2. Selected Bond Distances (\AA) and Angles (${ }^{\circ}$) for $\mathbf{1}$

distances						
Mn1	-	O1	1.948(3)	Mn1	- O 2	1.910(4)
Mn1	-	O1	1.920(3)	Mn1	- O1'	1.889(4)
Mn1	-	O2	1.919(4)	Mn1	- O7'	1.934(3)
Mn1	-	O9	2.222(4)	Mn1	- O29'	2.455(4)
Mn2	-	O2	1.858(4)	Mn2	- O7'	1.865(4)
Mn2	-	O8	2.328(4)	Mn2	- O10	2.244(4)
Mn2	-	O11	1.977(4)	Mn2	- O26'	1.959(4)
Mn3	-	O2	1.886(4)	Mn3	- O3	1.876(4)
Mn3	-	O4	1.932(4)	Mn3	- O12	1.958(4)
Mn3	-	O13	2.187(4)	Mn3	- O19	2.371(4)
Mn4	-	O1	1.876(3)	Mn4	- O3	1.920(4)
Mn4	-	O5	1.947(3)	Mn4	- O6	1.910(4)
Mn4	-	O18	2.237(4)	Mn4	- O19	2.291(4)
Mn5	-	O6	1.903(3)	Mn5	- O7	1.891(3)
Mn5	-	O18	2.422(4)	Mn5	- O23	2.144(4)
Mn5	-	O25	1.959(4)	Mn5	- O27	1.908(4)
Mn6	-	O3	1.880(4)	Mn6	- O4	1.942(4)
Mn6	-	O5	2.226(4)	Mn6	- O14	2.180(4)
Mn6	-	O15	1.966(4)	Mn6	- O17	1.964(4)
Mn7	-	O4	1.915(4)	Mn7	- O5	1.854(3)
Mn7	-	O16	2.174(4)	Mn7	- O19	2.456(4)
Mn7	-	O28	1.889(4)	Mn7	- N2	2.043(5)
Mn8	-	O5	2.197(4)	Mn8	- O6	2.267(3)
Mn8	-	O21	2.104(4)	Mn8	- O27	2.136(4)
Mn8	-	O28	2.216(4)	Mn8	- N1	2.244(5)
Mn9	-	O6	2.109(4)	Mn9	- O20	2.207(4)
Mn9	-	O22	2.128(4)	Mn9	- O24	2.190(4)
Mn9	-	O29	2.332(4)	Mn9	- N3	2.286(5)
Mn1	\ldots	Mn1'	2.893(2)	Mn1	... Mn2	2.810(1)
Mn3	\ldots	Mn4	3.082(1)	Mn3	... Mn6	2.818(1)
Mn3	\ldots	Mn7	3.210(1)	Mn4	... Mn5	3.059(1)
Mn4	\ldots	Mn6	2.940(1)	Mn4	... Mn7	3.211(1)
Mn4	\ldots	Mn8	3.119(1)	Mn5	... Mn8	3.203(1)
Mn6	\cdots	Mn7	2.840(1)	Mn7	... Mn8	3.116(1)

Table 2. continued

angles					
O1	- Mn1-O1'	81.15(15)	O1	- Mn1- O2	99.36(15)
O1	- Mn1-O7'	179.30(15)	O1	- Mn1- O9	89.07(14)
O1	- Mn1-O29'	90.75(13)	O1	- Mn1- O7'	99.08(15)
O1	- Mn1-O9	91.99(15)	O1	- Mn1- O29'	77.56(14)
O2	- Mn1-O1'	176.62(16)	O 2	- Mn1-O7'	80.45(15)
O2	- Mn1-O9	91.36(15)	O2	- Mn1- O29'	99.08(14)
7	- Mn1-O9	90.26(14)	O7	- Mn1- O29'	89.95(13)
O9	- Mn1-O29'	169.44(14)	O 2	- Mn2- O7'	83.89(15)
O2	- Mn2-O8	88.49(15)	O 2	- Mn2- O10	94.77(15)
O2	- Mn2-O11	94.72(16)	O2	- Mn2- O26'	178.73(17)
O7	- Mn2-	95.18(16)	O7	- Mn2- O10	91.49(15)
O7	- Mn2-O11	178.60(16)	07	- Mn2- O26'	96.94(16)
O8	- Mn2-O10	172.86(15)	O8	- Mn2- O11	84.75(17)
O8	- Mn2-O26'	92.38(16)	O1	- Mn2- O11	88.64(16)
O10	- Mn2-O26'	84.26(16)	O1	- Mn2- O26'	84.45(16)
O2	- Mn3-O3	90.76(15)	O 2	- Mn3- O4	168.99(17)
O2	- Mn3-O12	95.37(16)	O2	- Mn3- O13	95.55(15)
O2	- Mn3-O19	87.74(15)	O3	- Mn3- O4	82.81(15)
O3	- Mn3-O12	173.33(15)	O3	- Mn3- O13	91.27(15)
O3	- Mn3-O19	83.52(14)	O 4	- Mn3- O12	90.72(16)
O4	- Mn3-O13	93.52(16)	O4	- Mn3- O19	82.68(14)
O12	- Mn3-O13	90.73(17)	O12	- Mn3- O19	94.09(16)
O13	- Mn3-O19	173.89(14)	O1	- Mn4- O3	88.29(15)
O1	- Mn4-O5	173.71(16)		- Mn4- O6	95.27(15)
1	- Mn4-O18	97.77(14)		- Mn4- O19	95.88(13)
O3	- Mn4-O5	86.31(15)	O3	- Mn4- O6	174.45(15)
O3	- Mn4-O18	88.14(14)		- Mn4- O19	84.78(14)
O5	- Mn4- O6	90.36(15)	O5	- Mn4- O18	85.28(14)
5	- Mn4-O19	80.42(13)	O6	- Mn4- O18	87.17(14)
O6	- Mn4-O19	99.05(14)	O18	- Mn4- O19	164.41(14)
O6	- Mn5-O7	91.49(15)	O6	- Mn5- O18	82.14(14)
O6	- Mn5-O23	100.58(16)	O6	- Mn5- O25	167.23(17)
O6	- Mn5-O27	84.40(15)	07	- Mn5- O18	89.58(14)
O7	- Mn5-O23	93.98(16)	07	- Mn5- O25	95.02(15)
O7	- Mn5-O27	175.06(17)	O18	- Mn5- O23	175.44(14)
O18	- Mn5-O25	86.93(15)	O18	- Mn5- O27	87.14(15)
O23	- Mn5-O25	89.93(16)	O 23	- Mn5- O27	89.48(16)
O25	- Mn5-O27	88.50(15)	O3	Mn6- O4	82.43(15)
O3	- Mn6-O5	79.73(14)	O3	- Mn6- O14	90.20(16)
O3	- Mn6-O15	174.99(16)	O3	- Mn6- O17	92.40(16)
O4	- Mn6-O5	80.14(14)	O4	- Mn6- O14	93.14(16)
O4	- Mn6-O15	94.23(16)		- Mn6- O17	171.80(17)
O5	- Mn6-O14	168.50(14)	O5	- Mn6- O15	96.06(15)
O5	- Mn6-O17	92.72(15)	O14	- Mn6- O15	93.72(17)
O14	- Mn6-O17	93.24(17)	O15	- Mn6- O17	90.49(17)
O4	- Mn7- O5	91.15(16)	O4	- Mn7- O16	89.41(16)
O4	- Mn7-O28	174.52(17)	O4	- Mn7- N2	97.32(18)
O5	- Mn7-O16	94.51(15)		- Mn7- O19	80.74(14)
O5	- Mn7-O19	77.88(14)		- Mn7- O28	88.64(16)
O5	- Mn7- N2	165.52(18)	O16	- Mn7- O28	96.06(17)
O16	- Mn7-O19	167.35(14)	O16	- Mn7- N2	97.28(17)
O19	- Mn7-O28	93.86(15)		- Mn7- N2	91.87(15)
28	- Mn7- N2	81.80(18)	O5	Mn8- O6	75.57(13)
O5	- Mn8-O21	156.52(15)	O5	- Mn8- O27	97.70(14)
O5	- Mn8-O28	72.67(13)	O5	- Mn8- N1	96.47(16)
O6	- Mn8-O21	103.73(15)	O6	- Mn8- O27	71.02(13)
O6	- Mn8-O28	115.22(14)	O6	- Mn8- N1	142.40(15)
O21	- Mn8-O27	104.27(16)		- Mn8- O28	87.07(16)
O21	- Mn8-N1	97.47(17)	O27	- Mn8- O28	165.72(15)
O27	- Mn8-N1	73.86(16)		- Mn8- N1	96.36(16)
O6	- Mn9- O20	91.62(15)	O6	- Mn9- O22	102.09(16)
O6	- Mn9- O24	99.78(15)	O6	- Mn9- O29	97.44(13)
O6	- Mn9- N3	167.47(16)		- Mn9- O22	90.68(19)
O20	- Mn9-O24	168.49(15)	O20	- Mn9- O29	89.57(14)
O20	- Mn9-N3	83.04(17)	O 22	- Mn9- O24	88.54(19)
O22	- Mn9-O29	160.45(16)		- Mn9- N3	89.35(17)
	- Mn9-N3	85.46(17)	O 24	- Mn9- O29	87.34(15)
O29	- Mn9-N3	71.28(15)			

[^1]cm^{-1}): 1609 (vs), 1576 (vs), 1541 (vs), 1419 (vs) 1341 (w), 718 (m), 668 (s), 617 (s), 554 (m). Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{9} \mathrm{Mn}_{18} \mathrm{~N}_{6} \mathrm{O}_{58}$: C, 29.19; H, 3.27; N, 2.83\%. Found: C, 29.45; H, 3.33; N, 3.01.

Crystal Structure Determination. Reflection data were collected on an Bruker SMART CCD diffractometer using monochromated $\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation. The data were integrated and scaled using SAINT software package. ${ }^{19}$ Collected data were corrected for absorbance using SADABS ${ }^{14}$ based upon the Laue symmetry using equivalent reflections. Structure was solved by direct method and refined by leastsquares calculations with the SHELXL-PLUS 5.05 software package. ${ }^{20}$ The non-hydrogen atoms were refined anisotropically and the geometrically restrainted hydrogen atoms were treated using appropriate riding model. A summary of the crystallographic parameters and data is given in Table 1.

Acknowlegement. This work was supported by the NRL program of the Ministry of Science and Technology, Korea. One of the authors (S.Y.) acknowledges the support by KOSEF via Electron Spin Science Center at POSTECH.

References

1. Caneschi, A.; Gatteschi, A.; Sangregorio, C.; Sessoli, R.; Sorace, L.; Cornia, A.; Novak, M. A.; Paulsen, C.; Werndorfer, W. J. Magn. Magn. Mater. 1999, 200, 182.
2. Lis, T. Acta Crystallogr. 1980, B36, 2042.
3. Sessoli, R.; Gatteschi, D.; Canneschi, A.; Novak, M. A. Nature 1993, 365, 141.
4. Aromi, G.; Aubin, S. M. J.; Bolcar, M. A.; Christou, G.; Eppley, H. J.; Folting, K.; Hendrickson, D. N.; Huffman, J. C.; Squire, R. C.; Tsai, H.-L.; Wang, S.; Wemple, M. W. Polyhdron 1998, 17, 3005.
5. Park, C.-D.; Jung, D.-Y. Bull. Korean Chem. Soc. 2001, 22, 611.
6. Koo, B.-K.; Lee, U. Bull. Korean. Chem. Soc. 2001, 22, 103.
7. Aubin, S. M. J.; Spagna, S.; Eppley, H. J.; Sager, R. E.; Christou, G.; Hendrickson, D. N. Chem. Commun. 1998, 803.
8. Oshio, H.; Hoshino, N.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 12602.
9. Bara, A.-L.; Debrunner, P.; Gatteschi, D.; Schulz, Ch. E.; Sessoli, R. Europhys. Lett. 1996, 35, 133.
10. Castro, S. L.; Sun, Z. M.; Grant, C. M.; Bollinger, J. C.; Hendrickson, D. N.; Christou, G. J. Am Chem. Soc. 1998, 120, 2365.
11. Bolcar, M. A.; Aubin, S. M. J.; Folting, K.; Hendrickson, D. N.; Christou, G. Chem. Commun. 1997, 1485.
12. Boskovic, C.; Brechin, E. K.; Streib, W. E.; Folting, K.; Hendrickson, D. N.; Christou, G. Chem. Commun. 2001, 467.
13. Kim, J.; Lim, J. M.; Do, Y. Eur. J. Inorg. Chem. 2003, 2563.
14. Squire, R. C.; Aubin, S. M. J.; Folting, K.; Streib, W. E.; Hendrickson, D. N.; Christou, G. Angew. Chem. Int. Ed. Engl. 1995, 34, 887.
15. Kahn, O. Molecular Magnetism; VCH: New York, 1993; pp 1416.
16. Brechin, E. K.; Boskovic, C.; Wernsdorfer, W.; Yoo, J.; Yamaguchi, A.; Sanudo, E. C.; Concolino, T. R.; Rheingold, A. L.; Ishimoto, H.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 2002, 124, 9710.
17. Aromi, G.; Bhaduri, S.; Artus, P.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Polyhedron 2002, 21, 1779.
18. Vincent, J. B.; Chang, H. R.; Folting, K.; Huffman, J. C.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1987, 109, 5703.
19. Bruker AXS; Madison, WI, 1997.
20. Blessing, R. H. Acta Crystallogr. Sect. A 1995, 51, 33.

[^0]: *Corresponding Author. Phone: +82-41-850-8496; Fax: +82-41-850-8479; e-mail: jkim@kongju.ac.kr

[^1]: symmetry codes: ' $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$

