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Molecular reorientation of oblate symmetric top molecules with internal rotation is investigated theoretically and an
analytic expression for the overall reorientational correlation time in terms of the internal angular momentum correlation
time is derived. This expression is quite different from the expression for prolate symmetric top molecules but reduces to
the same expresssion in the spherical top limit. Fast internal rotation is treated by a modified version of the extended
rotational diffusion while the bulky symmetric top mainbody is treated by the rotational diffusion model.

Introduction

Molecular reorientation in liquid has been investigated
by various methods! such as NMR, IR, Raman, Rayleigh
light scattering, etc. along with several theoretical models.?
These models include rotational diffusion,® jump diffu-
sion,4~® and extended rotational diffusion.”-® Of these, the
extended rotational diffusion model proposed by Gordon’
is well known to give the best description since it can be
applied to a rather wide range between small angular step
diffusion and free inertial rotation. This model was successfully
applied to linear,” spherical top,® and symmetric top mo-
lecules.!® Another class of molecules which are of great
importance in application are those with internal rotations.
Application of the extended rotational diffusion model to
symmetric top molecules with internal rotation was carried
out by Bull!l some time ago. However, his treatment assigns
the same angular momentum correlation time to both the
overall reorientation and internal rotation. Experimental
evidence shows that internal rotation of side groups such
as methyl group is much faster compared to overall reorienta-
tion of rather bulky mainbody. Moreover, his expression is
not amenable to analytical evaluation. In order to remedy
the situation we proposed a theoretical model!? in which the
overall reorientation of a symmetric top molecule is treated
by rotational diffusion while the internal rotation is treated
by a modified extended rotational diffusion model. Our
model calculation leads to an analytical expression for the
overall reorientational correlation time as a function of
internal angular momentum correlation time. Application
of our model to liquid toluene revealed an appreciable degree
of inertial effect in internal rotation of methyl group.!®

When there is no internal rotation it is not necessary to
distinguish prolate symmetric tops from oblate symmetric
top molecules in the theoretical formulation of molecular
reorientation. Existing theories describing internal rotation
are dealing implicitly with prolate symmetric top mainbody.
Our previous work was also in the same spirit and toluene
molecule was assumed to be a prolate symmetric top mo-
lecule. However, when the internal rotor is attached to an
oblate symmetric top molecule such as mesitylene the
situation becomes quite different since the axis of internal

rotation is along the minor principal axis of the mainbody.
Previous theories are applicable to the case when the axis
of internal rotation is along the major principal axis of the
prolate symmetric top mainbody. It is the purpose of the
present work to complement our earlier work so that internal
rotors attached to any type of symmetric top molecules can
be properly described. We start from the definition of re-
orientational correlation function and the overall reorienta-
tional correlation time in the presence of internal extended
rotational diffusion will be derived as an analytic expression
in terms of the internal angular momentum correlation time.
As before, only the internal rotation is treated by the extended
rotational diffusion and the reorientation of oblate sym-
metric top mainbody is reasonably assumed to undergo
rotational diffusion.

Theory

The overall reorientational correlation function in the
presence of internal rotation is given by®
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where D;;® is the second rank Wigner rotation matrix
element and Q;p is the Euler angles connecting the la-
boratory fixed coordinate system and the coordinate system
fixed to the internal rotor. <(--->> denotes the ensemble
average. Here we are considering an oblate symmetric top
molecule with internal rotation about a minor principal
axis of the mainbody which is the axis of tumbling reorienta-
tion. The major principal axis is taken to be the z-axis of
the principal coordinate system fixed to the mainbody. The
rotation matrix element can be further decomposed into

D®[Qur]= 5 Dis® 2101 Dsa®' L0, 7 /2, 01Dan®[a, B, 0]
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where the summation is from —2 to -2 and Q,p is the Euler
angles connecting the laboratory fixed frame and the principal
coordinate system. The second sct of Euler angles represents
the transformation from the principal coordinate system to
the coordinate system fixed to the mainbody with the z-axis
coincident with the minor principal axis. The last set of
Euler angles are required to transform to the coordinate
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system fixed to the internal rotor such as a methyl group.
In this case the z-axis is taken to be along the C-H bond and
8 is the fixed tetrahedral angle and 7 is set to zero without
loss of generality. The angle « is the time-dependent internal
rotation angle.

The numerator of Eq. (1) then becomes
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The second approximate equality is introduced by assuming
that the overall reorientation is independent of the internal
rotation. Since the reorientation of bulky mainbody may be
reasonably assumed to undergo rotational diffusion, the
first ensemble average becomes?
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and ¢;; is the Kronecker delta. D, is the rotational diffusion
constant for the spinning about the major principal axis
and D,.is for the tumbling about the minor principal axis.

The second ensemble average which represents the internal
rotation may be treated by the modified extended rotational
diffusion model proposed recently by us.1213 In this model,
the direction of the internal angular momentum vector is
fixed along the minor axis of the principal coordinate system
and only the magnitude of the internal angular momentum is
randomized at the end of each free rotational step. By follow-
ing our earlier procedure, it.can be shown that
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where z; is the internal angular momentum correlation time
and the ensemble averages are over the initial internal
rotation angle, «(0), and over the magnitude of the internal
angular momentum vector in the m-th free rotational step,
Jo, Tespectively. I, is the moment of inertia of the internal
rotor about the minor axis of the principal coordinate system.
The Kronecker delta comes from the first ensemble average
and G, ‘P represents the rest of the expression on the right
hand side of Eq. (5).
Then, Eq. (1) becomes
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It is well known that the reorientational correlation
time r,, which can be evaluated from NMR dipolar or
quadrupolar relaxation experiments, is defined by a time
integral of Gy j(f) component as*
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Although the internal rotational correlation function
G cannot be further simplified, the time integral
in the above expression is known to be evaluated analytically
to give

=5 [da® (x/2) dus® (0) P o7 80 ®
where
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and erfc (z) is the complementary error function. The pre-

sence of d® matrix elemet with argument /2 simplifies
Eq. (8) further to give
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The dpp® (8) matrix elements can be explicitly written by
Rose’s formulal* to yield
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The first two terms in Eq. (10) can be simplified further by
using the fact that

Y (a, 0) :133,1 Y(a, b)=(E*+1/r;%)7! 13)
to give
7*F(a,0)=A/E* (14)
which is independent of r;*. Therefore, Eq. (10) may be
rewritten as
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where
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In the internal rotational diffusion limit, 7;*—0, the
overall reorientational correlation time can be reduced to
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Also, in the internal free rotational limit, z;¥—oo0, z.* is
reduced to
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Discussion

The overall reorientational correlation time in the pre-
sence of internal rotation can be evaluated in terms of the
internal angular momentum correlation time and vice versa
via Eq. (15) which is our main result. However, one must
know the values of rotational diffusion constants first. This
may be accomplished for a simple oblate symmetric top
such as mesitylene by measuring '*C nuclear magnetic
relaxation time due to the dipole-dipole relaxation mechanism
on the unsubstituted ring carbons. The ring carbon-13
relaxation time is directly related to the overall reorienta-
tional correlation time without internal rotation which
appeared in Eq. (15) as 7,*. The expression for 7,* involves
both D;* and D,* and one must know at least the ratio of
diffusion constants or the value of one diffusion constant
from other experiments. At present, there exist no consistent
and complete set of experimental data which are necessary
to evaluate 7;* from Eq. (15). Moreover, some reported
data show rather big differences. For example, Kuhlmann
and Grant!% reported the dipolar relaxation time of methyl
carbon-13 for mesitylene as 23.0 sec at 40°C while Tancredo,
et al.!® reported the value of 39.2 sec at 38°C. In view of
these situations we do not attempt of extract any number
from existing experimental data and hope that these situa-
tions would be clarified in the near future.

At this point it would be interesting to compare the
present theory with our previous result on toluenel2 13
which was approximated as a prolate symmetric top mo-
lecule. This comparison is carried out by taking the limit
of Dy=D, for both results. If this limit is the same for
both results, it would show an indication that our theories
are consistent. In the limit of D;=D,=D, Eq. (15) becomes
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In the same limit, Eq. (8) of Ref. 12 gives the same expression
which is for a spherical top molecule. The rotational diffu-
sion limit (r;*—0) expression, Eq. (16), becomes

¥ (c*0) = 6%)* (A+B+C) (19)

which, in turn, reduces to 1/6D* for the tetrahedral angle.
The free rotational limit (r;*—c0) expression, Eq. (17),
becomes

£ * (r*—00) = 63* +B /773 exp[ (6D*)?/2] erfc (%)
+C yz]g exp [(6D%)?/8] exfe (ED0) (20)

The same expressions, Egs. (19) and (20), can also be obtained
from Egs. (9) and (10) of Ref. 12, respectively.
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