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Cationic Palladium Catalyzed Enyne Cycloreductions
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Effective construction of exomethylnecyclopentanes has beeressful cycloreductions were obtained. Finally, (N-N)Pd-
a major challenge in synthetic organic chemistry due to théleCl [N-N=4-isopropyl-2-(-2-pyridinyl)-2-oxazoline] 4}
large appearance of biologically active natural products poss&nd NaBAj [Ar=3,5-GH3(CFs)2] (5) were tested with the
essing 5-membered ringsviost of the approaches to date enynelain the presence of 1.5 equivalent of triethylsilane
involve olefination of cyclopentanoReadical cyclization of  (Scheme 1§:1°We isolated the cycloreduced prodRatand
halodienes or enynéspalladium catalyzed cycloreduction its silylated producBain 22% and 62% yields, respectively.
of enyneg, cycloisomerization of 1,6-diené#lthough these It is worth to note that a cationic palladium catalyst system
methods are well working for various enyne substrates, fewas used for cycloreduction of enynes for the first time. The
methods can apply to nitrogen-containing enynes. Ito and higbove conditions were applied to the structurally diverse
coworkers reported an enantioselective cycloisomerizatioenynes Ib-1k) as summarized in Table 1.
of nitrogen-containing enynes, but no groups have studied Several features are to be noted. The cationic palladium
their cycloreduction8 Various cationic palladium compounds species catalyzed cycloreductions of various enynes to the
have been utilized for catalytic cyclizations of 1,6-diehes. corresponding cycloreduced produétémong them, cyclo-
Recently, Widenhoefer and his coworkers have reported geduction of nitrogen-containing enynds,(1j, and1k) are
good method for enantioselective diene cycloisomerizationthe most informative for expanding the synthetic methodology.
using cationic palladium chiral compourfoé/e have long
been interested in searching an efficient and selective meth@able 1 Cycloreductions of enynes using cationic palladium
dology for enyne and enediyne cycloreductions using transicatalyst and triethylsilane
tion metal catalyst¥ While we were looking for a catalyst emp €C)/
for cycloreduction of nitrogen-containing enynes, we postuEtY ~ Substrates solventy e ()
lated that cationic palladium compounds might be of good

Products  Yields

choice to catalyze such nitrogen-containing enynes. Here 1 ¢ Z CH,Cly RT/18 B 88 (4%c)
we wish to report our preliminary results on cationic pall- b
adium catalyzed cycloreduction of enynes for the first time. &
We have choseN,N-allylpropargylaniline as the first sub- 2 ™A~ CHCL  RT24 2 7
strate since this substrate has not been well cyclized und ot
our previously reported conditions mainly due to the cleav- "
age of a C-N bond. When Rdba}, Pd(OAc), Pd(PPk)., 3 ~ CHC RT/6 2 63
or other allylpalladium chloride dimer was mixed with o
triethylsilane and acetic acid, formic acid, or silver triflate, HOH,C./~F i
the combined catalyst systems did not catalyze cycloreductic ML N le CHCh 50 2 >
of the enyne. We thought that inert reactivity could arise ~
from poor coordination of the enynes with palladium cata- 5 . aoph  CPCh RT/36 2f 93
lysts. Thus, we tested a diene-coordinated palladium corr
pound which might easily undergo ligand substitutions by g;/f
the enynes. A combined system of (COD)PdMeCl and silve  ° T CHCL o RT6 2 0
triflate in the presence of triethylsilane reacted quickly with ol
the enyne, but only reduction at the triple bond occurred. . - S0 an o
Then, (dppe)PdMeCl was prepared for test, but no suc MNP
§ i o/\//
o~ Z Ztissfﬁ?ﬂ); ;‘%gg{:) Ph_N/\:\‘/ . Ph—N[fS!Eta 5 CILCL,  RT/20 2 81
e p Tolt-p) 1i
1a 2a (22% 2%
G_éoj ¢ | ) e 9 TS_N/\% CHCl, RT/5 2j, 3j 35,50
S @) og i
Me ct . s CF, o . >
N . CH,Cl, 50/2 2k, 3k 10,57

Scheme 1
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Scheme 2

Second, isolation of the silylated products gave an important
clue for the cycloreduction mechanism. When the silylated
product3a was subjected to the same reaction conditions,

we isolated the desilylated produa. Third, asymmetric

cycloreduction of an enynkb under the present conditions

6.

was accomplished in a limited success (24% ee). Mechani-

stically, formation of the silylated produgtcould be ration-
alized as shown in Scheme 2.
The cationic methylpalladium compleba), formed from

methylpalladium chloride and sodium tetraarylborate, might
react with triethylsilane first to form triethylsilylpalladium
(Ib), which then undergo silapalladation with the more reac-

tive triple bond of the enyndsto form the triethylsilylvinyl-

palladium intermediatdg). Further carbopalladation witha g
pendant double bond and then subsequent reduction of

alkylpalladium intermediateld) by triethylsilane would

give the product8 and triethylsilylpalladium for next cata-
lytic cycle. Although we could not understand how the 9.

cycloreduced producBwere formed from the produdsit

should be noted that the silylated product would be an
important intermediate. It implied that the triethylsilane play
a dual role both in reductive cleavage of alkylpalladium
intermediates and in activating palladium catalyst to silapal-

ladate the terminal triple bond.

In summary, a 1:1 mixture of (N-N)PdMeCl [N-N=4-

isopropyl-2-(-2-pyridinyl)-2-oxazoline] and NaBAJAr=3,5-

CsH3(CRs),] could catalyze cycloreduction of various enynes

via silapalladation/cycloreduction under mild conditions.
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