Ytterbium(III) Triflate-Catalyzed One-Pot Mannich-Type Reaction in Ionic Liquid

Sang-gi Lee^{*} and Jung Hwan Park

Life Sciences Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea Received April 19, 2002

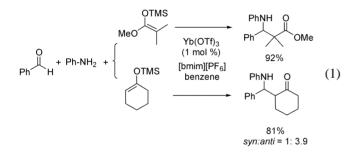
Key Words : Ionic liquid, Lanthanide triflates, Mannich

The Lewis acid-catalyzed reactions of imines with enolate components are useful methods for the preparation of β amino ketones or β -amino esters, leading to β -lactam derivatives.¹ As for the reactions using silyl enolates, use of a stoichiometric amount of TiCl₄ as a promoter was first reported in 1977.² Since then, some methodologies that report the catalytic use of Lewis acid promoters such as TMSOTf,^{3a} phosphonium slats,^{3b} FeI₂,^{3c} trityl hexafluoroantimonate, $3c^{3c}$ and $B(C_6F_5)_3^{3d}$ were published. A great advance in catalytic Lewis acid Mannich-type reaction was described by Kobayashi that reported the discovery of a highly efficient one-pot three component reaction of aldehydes, amines and enolates with the use of rare earth metal triflates such as ytterbium triflate, Yb(OTf)₃, and scandium triflate, Sc(OTf)₃.⁴ More recently, Loh found that indium trichloride, InCl₃, also can be an efficient catalyst for the three component synthesis of β -amino esters.⁵ The preferential coordination ability of the water-tolerant Lewis acids to aldimine over aldehyde^{5b,6} made the reactions possible in a mixture of THF-H₂O (9:1) with Yb(OTf)₃^{4b} or in pure H₂O with $InCl_{3}$,⁵ in which, however, rather longer reaction time (12-24 h in the presence of 10-20 mol% of catalyst) is required to completion. Recently, we found that the lanthanide triflates are stable and effectively catalyzed the three component one-pot Kabanich-Fields reaction of aldehydes, amines and phosphorus nucleophiles affording α -amino phosphonates in room temperature ionic liquids,⁷ in particular, consisting of 3-butyl-1-methylimidazolium (bmim) cations.⁸ Moreover, the reaction rate of the reaction was largely accelerated in ionic liquids compared to in organic or water solvents.9 These results prompt us to examine the onepot Mannich-type reactions affording β -amino ketones and esters in environmentally benign ionic liquids, [bmim][X], using the Lewis acids, $La(OTf)_3$, $Sc(OTf)_3$ and $InCl_3$ as catalysts (Scheme 1).

As a model reaction, the three component reaction of

$$[bmim][X] : X = PF_6, SbF_6, BF_6$$

benzaldehvde, aniline and acetophenone trimethylsilylenolate has been carried out at 20 °C using 1 mol % of Yb(OTf)₃ in [bmim][PF₆] (5 equivalent, 1 mL).[†] After 15 min, product can be isolated in 85% yield (entry 1). However, the insolubility of the product in ionic liquid hindered the stirring of the reaction mixture, which could be overcome by employing benzene (2 mL) as a co-solvent, and afforded product in 91% yield within 15 min (entry 2). Even in the presence of 0.1 mol % of Yb(OTf)₃, the reaction proceeded smoothly with a 80% yield within 15 min (entry 3). When the same reaction was conducted in benzene solvent only, the product was formed in 50% vield in 24 h (entry 4). These results indicate that the [bmim][PF₆] played a crucial role for the increased catalytic activity. Of special interest was the fact that the ionic liquid itself has catalytic property. Thus, the reaction without Yb(OTf)₃ for 26 h afforded 55% yield of adduct (entry 5). The yield was increased slightly as increase the amount of ionic liquid (60% yield, entry 6). Since fluoride anion can be an efficient activator for Mukaiyama aldol-type reactions,¹⁰ it could not be excluded the possibility that the fluoride anion generated from PF₆⁻ acts as a catalyst for this three component Mannich-type reaction. However, other ionic liquids such as $[bmim][SbF_6]$ and [bmim][BF₄] did not show such catalytic activity. The reactions using other catalysts such as $Sc(OTf)_3$ (76%, entry 7) and InCl₃ (70%, entry 8) or other ionic liquids, [bmim]-


Table 1. Three components One-Pot Mannich-type reactions ofaldehydes, aniline and acetophenone trimethylsilylenolate in[bmim][X]

Entry	Ar	Catalyst	Х	Yield ^a
1^b	Ph	Yb(OTf) ₃	[PF ₆]	85
2	Ph	Yb(OTf) ₃	$[PF_6]$	91
3^c	Ph	Yb(OTf) ₃	$[PF_6]$	80
4^d	Ph	Yb(OTf) ₃	-	50
5^e	Ph	_	$[PF_6]$	55
6 ^{<i>e</i>,<i>f</i>}	Ph	_	$[PF_6]$	60
7	Ph	Sc(OTf) ₃	$[PF_6]$	76
8	Ph	InCl ₃	$[PF_6]$	70
9	Ph	Yb(OTf) ₃	$[SbF_6]$	72
10	Ph	Yb(OTf) ₃	$[BF_4]$	47
11	3-Thiophehenyl	Yb(OTf) ₃	$[PF_6]$	97
12^g	2-Pyridyl	Yb(OTf)3	$[PF_6]$	70
13^g	1-Naphthyl	Yb(OTf) ₃	$[PF_6]$	78

^{*a*}Isolated yield. ^{*b*}Reaction without benzene. ^{*c*}Reaction with 0.1 mol% of Yb(OTf)₃. ^{*d*}Reaction in benzene only. ^{*e*}Reaction for 24 h. ^{*f*}Reaction in 10 equiv. of [bmim][PF₆]. ^{*g*}Reaction for 30 mim.

[SbF₆] (72%, entry 9) and [bmim][BF₄] (47%, entry 10) afforded the product with relatively lower yields. Reaction of silyl enol ether of acetophenone and aniline with other aldehydes such as 3-thiophencarboxaldehyde (97%, entry 11), 2-pyridinecarboxaldehyde (70%, entry 12), 1-naphthaldehyde (78%, entry 13) using 1 mol% of Yb(OTf)₃ in [bmim][PF₆] afforded the corresponding β -amino ketones in good yields.

Having ascertained the efficiency of $Yb(OTf)_3$ -catalyzed three component Mannich-type reaction in an ionic liquid, [bmim][PF₆], involving a silyl enol ether of acetophenone, this methodology was extended to another acyclic silyl enol ether, 1-methoxy-2-methyl-1-trimethylsiloxypropene, to give methyl 2,2-dimethyl-3-(*N*-phenylamino)-3-phenylpropionate in 92% yield. Also, a cyclic silyl enol ether, trimethyl-silyloxycyclohexene was reacted with benzaldehyde and aniline to give the desired product in good yield (81%) with *anti*-selectivity (*syn:anti* = 1 : 3.9) (Equation 1).

In summary, we have demonstrated that ionic liquids act as powerful reaction media for $Yb(OTf)_3$ -catalyzed three component one-pot Mannich-type reaction of aldehydes, an amine and silyl enol ethers. It has been also found that [bmim][PF₆] itself act as a catalyst. Further studies on the effect of rate acceleration and catalytic property of the ionic liquids are underway.

Acknowledgment. This work was supported from MOST (National Research Laboratory Program, 2N22890), CMDS

at KAIST, and KIST (2E17512).

Notes and References

[†]A typical procedure for the three component reactions in ionic liquid: Aniline (0.13 g, 1.48 mmol), benzaldehyde (0.1 g, 0.98 mmol) and acetophenone trimethylsilylenolate (0.28 g, 1.48 mmol) were successively added to a solution of Yb(OTf)₃ (6.1 mg, 9.8×10^{-3} mmol) in [bmim][PF₆] (1 mL)/benzne (2 mL) at 20 °C. After stirring the reaction mixture for 15 min, the insoluble solid was filtered. The filter cake was dissolved in CH₂Cl₂, and the organic layer was washed with water. Evaporation of the CH₂Cl₂ afforded pale brownish solid, which was treated with MeOH to give 3'-phenyl-3'-(*N*-phenylamino)propiophenone (0.27 g, 91%) as a white solid.

- Kleinman, E. F. Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pregamon Press: Oxford, 1991; Vol 2, p 893.
- 2. Ojima, I.; Inaba, S.-I.; Yoshida, K. Tetrahedron Lett. 1977, 3643.
- (a) Guanti, G.; Narisano, E.; Banfi, L. *Tetrahedron Lett.* **1987**, *28*, 4331.
 (b) Mukaiyama, T.; Kashiwagi, K.; Matsui, S. *Chem. Lett.* **1989**, 1397.
 (c) Mukaiyama, T.; Akamatsu, H.; Han, J. S. *Chem. Lett.* **1990**, 889.
 (d) Ishihara, K.; Funahashi, M.; Hanaki, N.; Miyata, N.; Yamamoto, H. *Synlett* **1994**, 963.
- (a) Kobayashi, S.; Araki, M.; Yasuda, M. Tetrahedron Lett. 1995, 36, 5773. (b) Kobayashi, S.; Ishitani, H. J. Chem. Soc., Chem. Commun. 1995, 1379.
- (a) Loh, T.-P.; Wei, L.-L. *Tetrahedron Lett.* **1998**, *39*, 323. (b) Loh, T.-P.; Liung, S. B. K. W.; Tan, K.-L.; Wei, L.-L. *Tetrahedron* **2000**, *56*, 3227.
- 6. Kobayashi, S.; Nagayama, S. J. Org. Chem. 1997, 62, 232.
- (a) Lee, S.-g.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commun. 2001, 1698. (b) Lee, S.-g.; Lee, J. K.; Song, C. E.; Kim, D.-C. Bull. Korean Chem. Soc. 2002, 23, 667.
- (a) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. Engl. 2000, 39, 3772. (b) Welton, T. Chem. Rev. 1999, 99, 2071. (c) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351. (d) Chauvin, Y.; Olivier, H. CHEMTECH 1995, 26, and references therein.
- The rate acceleration effects of ionic liquids in other catalytic reactions, see: (a) Song, C. E.; Roh, E. J. *Chem. Commun.* 2000, 837. (b) Song, C. E.; Shim, W. H.; Roh, E. J.; Choi, J. H. *Chem. Commun.* 2000, 1695. (c) Song, C. E.; Shim, W. H.; Roh, E. J.; Lee, S.-g.; Choi, J. H. *Chem. Commun.* 2001, 1122.
- Noyori, R.; Yokoyama, K.; Sakata, J.; Kuwajima, I.; Nakamura, E.; Shimizu, M. *J. Am. Chem. Soc.* **1977**, *99*, 1265. (b) Nakamura, E.; Shimizu, M.; Kuwajima, I.; Sakata, J.; Yokoyama, K.; Noyori, R. *J. Org. Chem.* **1983**, *48*, 932.